Unit 3: Exponential and Logs Test Review

1. Sketch the graph of the following equation.

Find the following:

Transformations:

Right	λ
Down	5

Sketch the graph of the following equation.

$$f(x) = \log_2(x-3) + 4$$

Find the following:

- Parent function: $y = log_2(x)$
- **Transformations:**

Right	3	
Up 4		

- Domain: £x|x 23}
- Asymptote:

3. Sketch the graph of the following equation.

$$f(x) = \ln(x+1) - 2$$

Find the following:

- Parent function: $\gamma = \ln(x)$
- Transformations:

Domain:

Range: _

Asymptote:____

Rewrite the following equations in logarithmic form.

4.
$$x^5 = 32$$

$$\log_{X}(3a) = 5$$

5.
$$e^5 = x$$

$$\log_e x = 5$$

$$\ln(x) = 5$$

Rewrite the following equations in exponential form.

6.
$$\log_5 125 = 3$$

7.
$$\ln 7 = x$$

$$e^{X}=7$$

Solve for x.

8.
$$5\log_2(x) + 4 = 19$$

$$5\log_{\lambda}(x) = 15$$

$$\log_{\lambda}(x) = 3 \qquad (x = 8)$$

$$\lambda^{3} = x$$

10.
$$\log_4(x+2) + \log_4(2) = \log_4(16)$$

$$log_{4}(\lambda x+4) = log_{4}(16)$$

 $\lambda x+4 = 16$
 $\lambda x = 1\lambda$

12.
$$2\ln(x+3)+1=13$$

$$\lambda \ln (x+3) = 1\lambda$$
 $\ln (x+3) = 6$
 $e^6 = x+3$
 $x = e^6 - 3$
 $x = 400.43$

14.
$$\log_7(x-5) + \log_7(3) = \log_7(8x)$$

$$\log_7(3x-15) = \log_7(8x)$$

 $3x-15 = 8x$
 $-15 = 5x$

9.
$$3e^{2x} + 2 = 17$$

 $3e^{\lambda \lambda} = 15$
 $e^{\lambda \lambda} = 5$
 $\lambda \lambda = \ln(5)$ $\chi = \frac{\ln(5)}{\lambda}$

11.
$$25^{3x} = 125^{x+4}$$

$$5^{3(3x)} = 5^{3(x+4)}$$

 $6x = 3x + 12$ $x = 4$
 $3x = 12$

13.
$$7\log_x(27) - 6 = 15$$

$$7\log_{x}(\lambda 7) = \lambda 1$$

 $\log_{x}(\lambda 7) = 3$ $x = 3$
 $x^{3} = \lambda 7$

15.
$$\frac{1}{2}e^{x-5} = 42$$

$$e^{X-5} = 84$$

 $X-5 = \ln(84)$ $X = 4.43$
 $X = \ln(84) + 5$

16.
$$3^{2x} = 81^{x-1}$$

 $3^{2x} = 3^{4(x-1)}$
 $3^{2x} = 3^{4(x-1)}$

18.
$$2\log_2(x+3) = 8$$

 $\log_3(x+3) = 4$
 $\lambda^4 = x+3$
 $16 = x+3$

20.
$$4 \ln x = 48$$
 $\ln x = 1\lambda$
 $\rho \ln x = \chi$
 $\chi = 16\lambda,754.79$

22.
$$\ln x^2 = \ln(3x + 28)$$

 $\chi^2 = 3\chi + 3\eta$
 $\chi^2 - 3\chi - 3\eta = 0$
 $(\chi - 7)(\chi + 4) = 0$

$$g^{\chi} = 16$$

$$g^{\chi} = g^{\lambda}$$

$$\chi = \lambda$$

19.
$$\log_3 4x - \log_3 7 = \log_3 10$$

$$\frac{4X}{7} = \frac{10}{1}$$

$$70 = 4X$$
 $X = 17.5$

21.
$$\log_{7}(3x-5) = \log_{7}2x + \log_{7}4$$

 $\log_{7}(3x-5) = \log_{7}(8x)$
 $3x-5 = 8x$
 $-5 = 5x$

23.
$$\log_3 5 + \log_3 (x - 7) = 2$$

 $\log_3 (5x - 35) = \lambda$
 $3^{\lambda} = 5x - 35$
 $9 = 5x - 35$
 $44 = 5x$

- 24. Ms. McNally loves animals! She starts with 2 cats and her cat family quadruples in size each year.
 - a. Write an function to model this situation. $y = \lambda(4)^{x}$
 - b. After how many years will Ms. McNally have at least 35 cats?

35 =
$$\lambda(4)^{x}$$
 $\chi = \log_{4}(17.5)$
17.5 = $(4)^{x}$ $\chi \approx \lambda.065$ years

25. Mrs. McGeorge and Mr. Gaston love to compete. Mrs. McGeorge thinks she can earn more money at her bank than Mr. Gaston. She invests \$2100 earning 2.7% interest compounded annually. Mr. Gaston invests \$1500 at his bank earning 6% interest compounded annually. Who will be the first to have \$3000 saved?

M 3000 =
$$\lambda 100 \left(1 + \frac{0.027}{1}\right)^{1.8}$$

1.42857 = $\left(1.027\right)^{1}$
 $X = \log_{1.027} \left(1.42857\right) \approx 13.39$
Years

be the first to have \$3000 saved?
$$\hat{G} \quad 3000 = |500(1 + \frac{0.06}{1})^{1 \cdot X} \times |500|^{1 \cdot X$$

- Pauli invests \$4000 in a savings account that pays 4% compounded monthly.
 - Write an equation to find the principal after t years.
 - b. How much will he have after 18 months? (Hint: How many years is 18 months?) $t = \frac{18}{12} = 1.5$
 - c. How many months will it take him to save \$7000?

a)
$$A = 4000 (1 + \frac{0.04}{1a})^{12t} /$$

b) $A = 4000 (1 + \frac{0.04}{1a})^{(12 \cdot 1.5)} \approx 14 + 6.92$
c) $7000 = 4000 (1 + \frac{0.04}{1a})^{12t} \longrightarrow 4 \approx 14 \text{ years}$

- 27. A bacteria sample contains 46 cells and the number of bacteria double every ho
 - y=46(2)* a. Write a function to find the number of bacteria after t months.
 - b. How many bacteria are there after 10 hours?

28. Julie invests \$15,000 in a bond pays an annual rate of 6.5% interest compounded continuously. Write a function to find the value after t years.

29. An antique car is worth \$75,000 and appreciates at a rate of 7% each year. Write a function to model the value of the car after t years.

$$A = 75000(1+0.07)^{t} \rightarrow A = 75000(1.07)^{t} \checkmark$$

30. A 2000mg sample of carbon has a half life of 200 years. Write function to model the amount remaining after t years. How much of the sample remains after 300 years.

a)
$$A = \lambda 000 (1/a)^{t/200} \checkmark$$

b) $A = \lambda 000 (1/a)^{(300/200)} \approx 707.11 mg$

Evaluate the following.

32.
$$\ln e^{1} = 1$$
 33. $\log_{3} \frac{1}{9} = \chi$ 34. $Z^{\log_{7} 12} = 1$

33.
$$\log_3 \frac{1}{9} = \chi$$

$$3^{\lambda} = \frac{1}{4}$$

$$3^{\lambda} = 3^{-1}$$