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CARL FRIEDRICH GAUSS

The Gaussian Distributions
By age 18, Carl Friedrich Gauss (1777–1855) had indepen-
dently discovered the binomial theorem, the arithmetic-
geometric mean, the law of quadratic reciprocity, and the
prime-number theorem. By age 21, he had made one of his

most important discoveries: the construction of a regular 17-sided polygon by ruler
and compasses, the first advance in the field since the early Greeks. 

Gauss’s contributions to the field of statistics include the method of least
squares and the normal distribution, frequently called a Gaussian distribution
in his honor. The normal distribution arose as a result of his attempts to
account for the variation in individual observations of stellar locations. In
1801, Gauss predicted the position of a newly discovered asteroid, Ceres.
Although he did not disclose his methods at the time, Gauss had used his
least-squares approximation method. When the French mathematician
Legendre published his version of the method of least-squares in 1805,
Gauss’s response was that he had known the method for years but had never
felt the need to publish. This was his frequent response to the discoveries of
fellow scientists. Gauss was not being boastful; rather, he cared little for fame.

In 1807, Gauss was appointed director of the
University of Göttingen Observatory, where he worked
for the rest of his life. He made important discoveries in
number theory, algebra, conic sections and elliptic
orbits, hypergeometric functions, infinite series, differ-
ential equations, differential geometry, physics, and
astronomy. Five years before Samuel Morse, Gauss built
a primitive telegraph device that could send messages
up to a mile away. It is probably fair to say that
Archimedes, Newton, and Gauss are in a league of their
own among the great mathematicians.

Gauss’s contributions to
the field of statistics
include the method of
least-squares and the 
normal distribution, 
frequently called a
Gaussian distribution in
his honor.
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ACTIVITY 4 Modeling the Spread of Cancer in the Body

Materials: a regular six-sided die for each student; transparency grid; copy
of grid for each student
Cancer begins with one cell, which divides into two cells.1 Then these two cells
divide and produce four cells. All the cancer cells produced are exactly like the
original cell. This process continues until there is some intervention such as radi-
ation or chemotherapy to interrupt the spread of the disease or until the patient
dies. In this activity you will simulate the spread of cancer cells in the body.

1. Select one student to represent the original bad cell. That person rolls
the die repeatedly, each roll representing a year. The number 5 will signal
a cell division. When a 5 is rolled, a new student from the class will receive
a die and join the original student (bad cell), so that there are now two can-
cer cells. These two students should be physically separated from the rest of
the class, perhaps in a corner of the room.

2. As the die is rolled, another student will plot points on a transparency
grid on the overhead projector. “Time,” from 0 to 25 years, is marked on the
horizontal axis, and the “Number of cancer cells,” from 0 to 50, is on the
vertical axis. The points on the grid will form a scatterplot.

3. At a signal from the teacher, each “cancer cell” will roll his or her die. If
anyone rolls the number 5, a new student from the class receives a die and
joins the circle of cancer cells. The total number of cancer cells is counted,
and the next point on the grid is plotted. The simulation continues until all
students in the class have become cancer cells.

Questions:
Do the points show a pattern? If so, is the pattern linear? Is it a curved pattern?
What mathematical function would best describe the pattern of points? 

Each student should keep a copy of the transparency grid with the plotted
points. We will analyze the results later in the chapter, after establishing some
principles.
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4.1 TRANSFORMING RELATIONSHIPS
How is the weight of an animal’s brain related to the weight of its body? Figure
4.1 is a scatterplot of brain weight against body weight for 96 species of mam-
mals.2 This line is the least-squares regression line for predicting brain weight
from body weight. The outliers are interesting. We might say that dolphins and
humans are smart, hippos are dumb, and elephants are just big. That’s because
dolphins and humans have larger brains than their body weights suggest, hip-
pos have smaller brains, and the elephant is much heavier than any other
mammal in both body and brain.
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FIGURE 4.1 Scatterplot of brain weight against body weigth for 96 species of mammals.

The plot in Figure 4.1 is not very satisfactory. Most mammals are so small relative to
elephants and hippos that their points overlap to form a blob in the lower-left corner
of the plot. The correlation between brain weight and body weight is r = 0.86, but this
is misleading. If we remove the elephant, the correlation for the other 95 species is r =
0.50. Figure 4.2 is a scatterplot of the data with the four outliers removed to allow a
closer look at the other 92 observations. We can now see that the relationship is not lin-
ear. It bends to the right as body weight increases.

EXAMPLE 4.1 MODELING MAMMAL BRAIN WEIGHT VERSUS BODY WEIGHT
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Biologists know that data on sizes often behave better if we take logarithms before
doing more analysis. Figure 4.3 plots the logarithm of brain weight against the loga-
rithm of body weight for all 96 species. The effect is almost magical. There are no
longer any extreme outliers or very influential observations. The pattern is very linear,
with correlation r = 0.96. The vertical spread about the least-squares line is similar
everywhere, so that predictions of brain weight from body weight will be about equally
precise for any body weight (in the log scale).
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FIGURE 4.2 Brain weight against body weight for mammals, with outliers removed.

FIGURE 4.3 Scatterplot of the logarithm of brain weight against the logarithm of body weight for

96 species of mammals.



Example 4.1 shows that working with a function of our original measurements
can greatly simplify statistical analysis. Applying a function such as the logarithm
or square root to a quantitative transforming variable is called transforming or 
reexpressing the data. We will see in this section that understanding how simple
functions work helps us choose and use transformations. Because we may want to
transform either the explanatory variable x or the response variable y in a scatterplot,
or both, we will call the variable t when talking about transforming in general.

First steps in transforming
Transforming data amounts to changing the scale of measurement that was
used when the data were collected. We can choose to measure temperature in
degrees Fahrenheit or in degrees Celsius, distance in miles or in kilometers.
These changes of units are linear transformations, discussed on pages 53 to 55.
Linear transformations cannot straighten a curved relationship between two
variables. To do that, we resort to functions that are not linear. The logarithm,
applied in Example 4.1, is a nonlinear function. Here are some others.

• How shall we measure the size of a sphere or of such roughly spherical
objects as grains of sand or bubbles in a liquid? The size of a sphere can be
expressed in terms of the diameter t, in terms of surface area (proportional to
t2), or in terms of volume (proportional to t3). Any one of these powers of the
diameter may be natural in a particular application.

• We commonly measure the fuel consumption of a car in miles per gallon, which
is how many miles the car travels on 1 gallon of fuel. Engineers prefer to measure
in gallons per mile, which is how many gallons of fuel the car needs to travel 1 mile.
This is a reciprocal transformation. A car that gets 25 miles per gallon uses

The reciprocal is a negative power 1/t = t–1.

The transformations we have mentioned—linear, positive and negative
powers, and logarithms—are those used in most statistical problems. They are
all monotonic.

1 1
25

0 04
miles per gallon

gallons per mile= = .
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transforming
reexpressing

MONOTONIC FUNCTIONS

A monotonic function f(t) moves in one direction as its argument t
increases.

A monotonic increasing function preserves the order of data. That is, if 
a � b, then f(a) � f(b).

A monotonic decreasing function reverses the order of data. That is, if 
a � b, then f(a) � f(b).



The graph of a linear function is a straight line. The graph of a monotonic
increasing function is increasing everywhere. A monotonic decreasing function
has a graph that is decreasing everywhere. A function can be monotonic over
some range of t without being everywhere monotonic. For example, the square
function t2 is monotonic increasing for t � 0. If the range of t includes both pos-
itive and negative values, the square is not monotonic—it decreases as t increases
for negative values of t and increases as t increases for positive values.

Figure 4.4 compares three monotonic increasing functions and three
monotonic decreasing functions for positive values of the argument t. Many
variables take only 0 or positive values, so we are particularly interested in how
functions behave for positive values of t. The increasing functions for t � 0 are

Linear a + bt, slope b � 0

Square t2

Logarithm log t
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Linear, positive slope Square Logarithm

Linear, negative slope Reciprocal square root Reciprocal

FIGURE 4.4 Three monotonic increasing functions and three monotonic decreasing functions.



The decreasing functions for t � 0 in the lower panel of Figure 4.4 are

Linear a + bt, slope b � 0

Reciprocal square root

Reciprocal 1/t, or t–1

Nonlinear monotonic transformations change data enough to alter the
shape of distributions and the form of relations between two variables, yet are
simple enough to preserve order and allow recovery of the original data. We
will concentrate on powers and logarithms. The even-numbered powers t2, t4,
and so on are monotonic increasing for t � 0, but not when t can take both
negative and positive values. The logarithm is not even defined unless t � 0.
Our strategy for transforming data is therefore as follows:

1. If the variable to be transformed takes values that are 0 or negative, first
apply a linear transformation to make the values all positive. Often we just add
a constant to all the observations.

2. Then choose a power or logarithmic transformation that simplifies the data,
for example, one that approximately straightens a scatterplot.

EXERCISES
4.1 Which of these transformations are monotonic increasing? Monotonic decreasing?
Not monotonic? Give an equation for each transformation.

(a) You transform height in inches to height in centimeters.

(b) You transform typing speed in words per minute into seconds needed to type a word.

(c) You transform the diameter of a coin to its circumference.

(d) A composer insists that her new piece of music should take exactly 5 minutes to
play. You time several performances, then transform the time in minutes into squared
error, the square of the difference between 5 minutes and the actual time.

4.2 Suppose that t is an angle, measured in degrees between 0° and 180°. On
what part of this range is the function sin t monotonic increasing? Monotonic
decreasing?

The ladder of power transformations
Though simple in algebraic form and easy to compute with a calculator, the
power and logarithm functions are varied in their behavior. It is natural to
think of powers such as

. . . , t–1, t–1/2, t1/2, t, t2, . . .

1 1 2/ , /t tor −
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as a hierarchy or ladder. Some facts about this ladder will help us choose
transformations. In all cases, we look only at positive values of the argu-
ment t.
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MONOTONICITY OF POWER FUNCTIONS

Power functions tp for positive powers p are monotonic increasing for values 
t � 0. They preserve the order of observations. This is also true of the logarithm.

Power functions tp for negative powers p are monotonic decreasing for values 
t > 0. They reverse the order of the observations.

It is hard to interpret graphs when the order of the original observations
has been reversed. We can make a negative power such as the reciprocal 1/t
monotonic increasing rather than monotonic decreasing by using –1/t instead.
Figure 4.5 takes this idea a step farther. This graph compares the ladder of
power functions in the form

The reciprocal (power p = –1), for example, is graphed as

This linear transformation does not change the nature of the power func-
tions tp, except that all are now monotonic increasing. It is chosen so that
every power has the value 0 at t = 1 and also has slope 1 at that point. So
the graphs in Figure 4.5 all touch at t = 1 and go through that point at the
same slope.

Look at the p = 0 graph in Figure 4.5. The 0th power t0 is just the con-
stant 1, which is not very useful. The p = 0 entry in the figure is not constant.
In fact, it is the logarithm, log t. That is, the logarithm fits into the ladder of
power transformations at p = 0.3

Figure 4.5 displays another key fact about these functions. The graph of
a linear function (power p = 1) is a straight line. Powers greater than 1 give
graphs that bend upward. That is, the transformed variable grows ever faster
as t gets larger. Powers less than 1 give graphs that bend downward. The
transformed values continue to grow with t, but at a rate that decreases as t
increases. What is more, the sharpness of the bend increases as we move
away from p = 1 in either direction.

1 1
1

1
1/ x
x

−
−

= −

t
p

p −1
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CONCAVITY OF POWER FUNCTIONS

Power transformations tp for powers p greater than 1 are concave up; that
is, they have the shape . These transformations push out the right tail of
a distribution and pull in the left tail. This effect gets stronger as the power
p moves up away from 1.

Power transformations tp for powers p less than 1 (and the logarithm for 
p = 0) are concave down; that is, they have the shape . These transforma-
tions pull in the right tail of a distribution and push out the left tail. This
effect gets stronger as the power p moves down away from 1.

Figure 4.6(a) is a scatterplot of data from the World Bank.4 The individuals are all the
world’s nations for which data are available. The explanatory variable x is a measure of

EXAMPLE 4.2 A COUNTRY’S GDP AND LIFE EXPECTANCY
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FIGURE 4.5 The ladder of power functions in the form (tp – 1)/p.
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Life expectancy does not have a large range, but we can see that the distribution
of GDP is right-skewed and very spread out. So GDP is a better candidate for trans-
formation. We want to pull in the long right tail, so we try transformations with p � 1.
Figures 4.6(b), (c), and (d) show the results of three transformations of GDP. The r-
value in each figure is the correlation when the three outliers are omitted.

The square root , with p = 1/2, reduces the curvature of the scatterplot, but
not enough. The logarithm log x (p = 0) straightens the pattern more, but it still 
bends to the right. The reciprocal square root , with p = –1/2, gives a pattern
that is quite straight except for the outliers. To avoid reversing the order of the obser-
vations, we actually used .−1/ x

1/ x

x

FIGURE 4.6 The ladder of transformations at work. The data are life expectancy and gross domes-

tic product (GDP) for 115 nations. Panel (a) displays the original data. Panels (b), (c), and (d)

transform GDP, moving down the ladder away from linear functions.

how rich a country is: the gross domestic product (GDP) per person. GDP is the total
value of the goods and services produced in a country, converted into dollars. The
response variable y is life expectancy at birth.

Life expectancy increases in richer nations, but only up to a point. The pattern in
Figure 4.6(a) at first rises rapidly as GDP increases but then levels out. Three African
nations (Botswana, Gabon, and Namibia) are outliers with much lower life expectancy
than the overall pattern suggests. Can we straighten the overall pattern by transforming?
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EXERCISES
4.3 MUSCLE STRENGTH AND WEIGHT, I Bigger people are generally stronger than smaller
people, though there’s a lot of individual variation. Let’s find a theoretical model. Body
weight increases as the cube of height. The strength of a muscle increases with its cross-
sectional area, which we expect to go up as the square of height. Put these together:
What power law should describe how muscle strength increases with weight?

4.4 MUSCLE STRENGTH AND WEIGHT, II Let’s apply your result from the previous problem.
Graph the power law relation between strength and body weight for weights from (say)
1 to 1000. (Constants in the power law just reflect the units of measurement used, so
we can ignore them.) Use the graph to explain why a person 1 million times as heavy
as an ant can’t lift a million times as much as an ant can lift.

4.5 HEART RATE AND BODY RATE Physiologists say that resting heart rate of humans is related
to our body weight by a power law. Specifically, average heart rate y (beats per minute)
is found from body weight x (kilograms) by5

y = 241 � x–1/4

Let’s try to make sense of this. Kleiber’s law says that energy use in animals, including
humans, increases as the 3/4 power of body weight. But the weight of human hearts
and lungs and the volume of blood in the body are directly proportional to body
weight. Given these facts, you should not be surprised that heart rate is proportional to
the –1/4 power of body weight. Why not?

Example 4.2 shows the ladder of powers at work. As we move down the ladder
from linear transformations (power p = 1), the scatterplot gets straighter. Moving
farther down the ladder, to the reciprocal 1/x = x–1, begins to bend the plot in the
other direction. But this “try it and see’’ approach isn’t very satisfactory. That life
expectancy depends linearly on does not increase our understanding of
the relationship between the health and wealth of nations. We don’t recommend
just pushing buttons on your calculator to try to straighten a scatterplot.

It is much more satisfactory to begin with a theory or mathematical model
that we expect to describe a relationship. The transformation needed to make
the relationship linear is then a consequence of the model. One of the most
common models is exponential growth.

Exponential growth
A variable grows linearly over time if it adds a fixed increment in each equal time
period. Exponential growth occurs when a variable is multiplied by a fixed num-
ber in each time period. To grasp the effect of multiplicative growth, consider a
population of bacteria in which each bacterium splits into two each hour.
Beginning with a single bacterium, we have 2 after one hour, 4 at the end of two
hours, 8 after three hours, then 16, 32, 64, 128, and so on. These first few num-
bers are deceiving. After 1 day of doubling each hour, there are 224 (16,777,216)
bacteria in the population. That number then doubles the next hour! Try successive
multiplications by 2 on your calculator to see for yourself the very rapid increase
after a slow start. Figure 4.7 shows the growth of the bacteria population over 24

1/ GDP
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A dollar invested at an annual rate of 6% turns into $1.06 in a year. The original dollar
remains and has earned $0.06 in interest. That is, 6% annual interest means that any
amount on deposit for the entire year is multiplied by 1.06. If the $1.06 remains invest-
ed for a second year, the new amount is therefore 1.06 � 1.06, or 1.062. That is only
$1.12, but this in turn is multiplied by 1.06 during the third year, and so on. After x
years, the dollar has become 1.06x dollars.

If the Native Americans who sold Manhattan Island for $24 in 1626 had deposit-
ed the $24 in a savings account at 6% annual interest, they would now have almost $80
billion. Our savings accounts don’t make us billionaires, because we don’t stay around
long enough. A century of growth at 6% per year turns $24 into $8143. That’s 1.06100

times $24. By 1826, two centuries after the sale, the account would hold a bit over $2.7
million. Only after a patient 302 years do we finally reach $1 billion. That’s real
money, but 302 years is a long time.

EXAMPLE 4.3 THE GROWTH OF MONEY

exponential growth model
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FIGURE 4.7 Growth of a bacteria population over a 24-hour period.

LINEAR VERSUS EXPONENTIAL GROWTH

Linear growth increases by a fixed amount in each equal time period.
Exponential growth increases by a fixed percentage of the previous total.

Populations of living things—like bacteria and the malignant cancer cells
in Activity 4—tend to grow exponentially if not restrained by outside limits
such as lack of food or space. More pleasantly, money also displays exponen-
tial growth when returns to an investment are compounded. Compounding
means that last period’s income earns income this period.

hours. For the first 15 hours, the population is too small to rise visibly above the
zero level on the graph. It is characteristic of exponential growth that the increase
appears slow for a long period, then seems to explode.

The count of bacteria after x hours is 2x. The value of $24 invested for x years
at 6% interest is 24 � 1.06x. Both are examples of the exponential growth model
y = a � bx for different constants a and b. In this model, the response y is mul-
tiplied by b in each time period.
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The logarithm transformation
The growth curve for the number of cell phone subscribers does look some-
what like the exponential curve in Figure 4.7, but our eyes are not very good
at comparing curves of roughly similar shape. We need a better way to check
whether growth is exponential. If you suspect exponential growth, you should
first calculate ratios of consecutive terms. In Table 4.2, we have divided each
entry in the “Subscribers” column (the y variable) by its predecessor, leaving
out both the first value of y, because it doesn’t have a predecessor, and the sec-
ond value, because the x increment is not 1. Notice that the ratios are not
exactly the same, but they are approximately the same. 

There is an increasing trend, but the overall pattern is not linear. The number of
cell phone subscribers has increased much faster than linear growth. The pattern of
growth follows a smooth curve, and it looks a lot like an exponential curve. Is this expo-
nential growth?
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FIGURE 4.8 Scatterplot of cell phone growth versus year, 1990–1999.

Does the exponential growth model sometimes describe real data that don’t arise
from any obvious process of multiplying by a fixed number over and over again? Let’s
look at the cell phone phenomenon in the United States. Cell phones have revolu-
tionized the communications industry, the way we do business, and the way we stay
in touch with friends and family. The industry enjoyed substantial growth in the
1990s. One way to measure cell phone growth in the 1990s is to look at the number
of subscribers. Table 4.1 and Figure 4.8 show the growth of cell phone subscribers
from 1990 to 1999.

TABLE 4.1 The number of cell phone subscribers in the United States, 1990–1999

Year 1990 1993 1994 1995 1996 1997 1998 1999
Subscribers
(thousands) 5283 16,009 24,134 33,786 44,043 55,312 69,209 86,047

Source: Statistical Abstract of the United States, 2000 and the Cellular Telecommunications Industry
Association, Washington, D.C.

EXAMPLE 4.4 GROWTH OF CELL PHONE USE
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TABLE 4.2 Ratios of consecutive y-values
and the logarithms of the y-values for the
cell phone data of Example 4.4

Year Subscribers Ratios log(y)

1990 5,283 — 3.72288
1993 16,009 — 4.20436
1994 24,134 1.51 4.38263
1995 33,786 1.40 4.52874
1996 44,043 1.30 4.64388
1997 55,312 1.26 4.74282
1998 69,209 1.25 4.84016
1999 86,047 1.24 4.93474

The next step is to apply a mathematical transformation that changes
exponential growth into linear growth—and patterns of growth that are not
exponential into something other than linear. But before we do the transfor-
mation, we need to review the properties of logarithms. The basic idea of a log-
arithm is this: log28 = 3 because 3 is the exponent to which the base 2 must be
raised to yield 8. Here is a quick summary of algebraic properties of logarithms:

ALGEBRAIC PROPERTIES OF LOGARITHMS

logbx = y if and only if by = x

The rules for logarithms are

1. log(AB) = logA + logB

2. log(A/B) = logA – logB

3. log Xp = p logX

Returning to the cell phone growth model, we hypothesize an exponential model of
the form y = abx where a and b represent constants. The necessary transformation is
carried out by taking the logarithm of both sides of this equation:

log y = log(abx)
= log a + log bx using Rule 1
= log a + (log b)x using Rule 3

EXAMPLE 4.5 TRANSFORMING CELL PHONE GROWTH
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The plot appears to be slightly concave down, but it is more linear than our origi-
nal scatterplot. Applying least-squares regression to the transformed data, Minitab
reports:

LOG(Y) = - 263 + 0.134 YEAR

Predictor Coef Stdev t-ratio p
Constant -263.20 14.63 -17.99 0.000
YEAR 0.134170 0.007331 18.30 0.000

s = 0.05655 R-sq = 98.2% R-sq(adj) = 97.9%

As is usually the case, Minitab tells us more than we want to know, but observe that the
value of r2 is 0.982. That means that 98.2% of the variation in log y is explained by least-
squares regression of log y on x. That’s pretty impressive. Let’s continue. Figure 4.10 is
a plot of the transformed data along with the fitted line.

4.90

4.20

1990 199819961992

lo
g 

y

Year
1994

FIGURE 4.10 Plot of transformed data with least-squares line.
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FIGURE 4.9 Scatterplot of log(subscribers) versus year.

Notice that log a and log b are constants because a and b are constants. So the right
side of the equation looks like the form for a straight line. That is, if our data really are
growing exponentially and we plot log y versus x, we should observe a straight line for
the transformed data. Table 4.2 includes the logarithms of the y-values. Figure 4.9
plots points in the form (x, log y).
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This is a surprise. But it also suggests an adjustment. The very regular pattern of
the last four points really does look linear. So if the purpose is to be able to predict the
number of subscribers in the year 2000, then one approach would be to discard the
first four points, because they are the oldest and furthest removed from the year 2000,
and retain the last four points. If you do this, the least-squares line for the four trans-
formed points (years 1996 through 1999) is

log NewY = -189 + 0.0970 NewX

and the r2-value improves to 1. The actual r2-value is 0.999897 to six decimal places.
The residual plot is shown in Figure 4.12.
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FIGURE 4.12 Residual plot for reduced transformed data set.

Although there is still a slight pattern in the residual plot, the residuals are very small
in magnitude, and the r2 value is nearly 1.

This appears to be a useful model for prediction purposes. Although the r2-value
is high, one should always inspect the residual plot to further assess the quality of the
model. Figure 4.11 is a residual plot.
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FIGURE 4.11 Residual plot for transformed cell phone growth data.
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Postscript: The stock market tumbled in 2000, the economy floundered, unem-
ployment increased, and the cell phone industry in particular had a very poor year.
So predicting the number of cell phone subscribers in 2000 is risky indeed.

Make sure that you understand the big idea here. The necessary transfor-
mation is carried out by taking the logarithm of the response variable. Your
calculator and most statistical software will calculate the logarithms of all the
values of a variable with a single command. The essential property of the log-
arithm for our purposes is that it straightens an exponential growth curve. If a
variable grows exponentially, its logarithm grows linearly.

Prediction in the exponential growth model
Regression is often used for prediction. When we fit a least-squares regres-
sion line, we find the predicted response y for any value of the explanatory
variable x by substituting our x-value into the equation of the line. In the
case of exponential growth, the logarithms rather than the actual responses
follow a linear pattern. To do prediction, we need to “undo” the logarithm
transformation to return to the original units of measurement. The same
idea works for any monotonic transformation. There is always exactly one
original value behind any transformed value, so we can always go back to
our original scale.

Our examination of cell phone growth left us with four transformed data points and a
least-squares line with equation

log(subscribers) = -189 + 0.0970(year)

To perform the back-transformation, we need to do the inverse operation. The inverse
operation of the logarithmic function is raising 10 to a power. If we raise 10 to the left
side of the equation, and set that equal to 10 raised to the right side of the equation,
we will eliminate the log() on the left;

10log (subscribers) = 10–189 + 0.0970(year)

Then

subscribers = (10–189)(100.0970(year))

To then predict the number of subscribers in the year 2000, we substitute 2000 for year
and solve for number of subscribers. The problem is that the first factor is too small a
quantity for the calculator, and it will evaluate to 0. To get around this machine diffi-
culty, if you have installed the equation of the least-squares line in the calculator as Y1,
then define Y2 to be 10^Y1. Doing this, we find that the predicted number of sub-
scribers for the year 2000 is Y2(2000) = 10,7864.5. Alternatively, we could have coded
the years to avoid the overflow problem.

EXAMPLE 4.6 PREDICTING CELL PHONE GROWTH FOR 2000
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Year: 1950 1960 1970 1980 1990
Population 

(thousands): 1131 1620 2557 5150 9534

TECHNOLOGY TOOLBOX Modeling exponential growth with the TI-83/89
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Figure 4.13 plots the logarithms of the bacteria counts in Figure 4.7 (page 204). Sure
enough, exact exponential growth turns into an exact straight line when we plot the
logarithms. After 15 hours, for example, the population contains 215 = 32,768 bacte-
ria. The logarithm of 32,768 is 4.515, and this point appears above the 15-hour mark
in Figure 4.13.

EXAMPLE 4.7 TRANSFORMING BACTERIA COUNTS
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FIGURE 4.13 Logarithms of the bacteria counts.

• Assuming an exponential model, here is a plot of log(POP), in L3, versus YEAR on the TI-83. We’ll
plot ln(POP) versus YEAR on the TI-89 since the natural logarithm key is more accessible on the TI-89.
The pattern is the same, but the regression equation numbers will be different.

• Code the years using 1900 as the reference year, 0. Then 1950 is coded as 50, and so forth. Enter the
coded years and population, in thousands, in L1/list1 and L2/list2. Then plot the scatterplot.

The Census Bureau classifies residents of the United States as being either white; black; Hispanic ori-
gin; American Indian, Eskimo, Aleut; or Asian, Pacific Islander. The population totals for these last
two categories, from 1950 to 1990, are6
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• Notice that the values of a and b in the equation of the least-squares line are different for the two
calculators. That’s because we use base 10 (log) on the TI-83 and we used base e (ln) on the TI-89.
The final predicted values will be the same regardless of which route we take. Here are the scatter-
plots with the least-squares lines:

• Despite the high r2-value, you should always inspect the residual plot. Here it is: 

TECHNOLOGY TOOLBOX Modeling exponential growth with the TI-83/89 (continued)

P2:L1,L3

X=50 Y=3.0534626

P3:L1,RESID

Y=.05188792X=50

F1
 Tools

F2
Zoom

F3
Trace

F4
Regraph

F5
Math

F6
Draw

F7
Pen

MAIN RAD AUTO FUNC

F1
 Tools

F2
Zoom

F3
Trace

F4
Regraph

F5
Math

F6
Draw

F7
Pen

MAIN
xc:50. yc:.119476

RAD AUTO FUNC

P3

P2:L1,L3

X=50……Y=3.0534626

F1
 Tools

F2
Zoom

F3
Trace

F4
Regraph

F5
Math

F6
Draw

F7
Pen

RAD AUTOMAIN FUNC

LinReg
 y=a+bx
 a=1.824616035
 b=.023539173
 r2=.9841134289
 r=.9920249135 

50
602
70
801.
90

F1
Tools

F2
Plots

F3
List

F4
Calc

F5
Distr

F6
Tests

F7
Ints 

list1  list2  list3  list.4

list3[ 1]=ln(1131)
MAIN RAD AUTO FUNC 3/7

LinReg(a+ bx)…

=4.20133
=.054201
=.984113
=.992025

y = a + bx
a
b
r2
r

Enter=OK

• The plot still shows a little upward concavity, and the residual plot will confirm this. Next, we
perform least-squares regression on the transformed data.

Ideally, the residual plot should show random scatter about the y = 0 reference line. The fact that the
residual plot still shows a clearly curved pattern tells us that some improvement is still possible. For
now, though, we will accept the exponential model on the basis of the high r2-value (r2 = 0.992). 

• Now we’re ready to predict the population of American Indians, Eskimos, Aleuts, Asians, and
Pacific Islanders for the year 2000. With the regression equation installed as Y1, define Y2 = 10^Y1
on the TI-83, and Y2 = e^Y1 on the TI-89. The predicted population in year 2000 is then Y2(100)
= 15,084.584 on the TI-83,  and 15,084.7 on the TI-89. The difference is due to roundoff error.
Since the table entries are in thousands, the actual predicted population is approximately
15,085,000. Looking at the plots, do you think this prediction will be too high or too low? Why?
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EXERCISES
4.6 GYPSY MOTHS Biological populations can grow exponentially if not restrained by preda-
tors or lack of food. The gypsy moth outbreaks that occasionally devastate the forests of the
Northeast illustrate approximate exponential growth. It is easier to count the number of
acres defoliated by the moths than to count the moths themselves. Here are data on an
outbreak in Massachusetts:7

Year Acres

1978 63,042
1979 226,260
1980 907,075
1981 2,826,095

(a) Plot the number of acres defoliated y against the year x. The pattern of growth
appears exponential.

(b) Verify that y is being multiplied by about 4 each year by calculating the ratio of
acres defoliated each year to the previous year. (Start with 1979 to 1978, when the ratio
is 226,260/63,042 = 3.6.)

(c) Take the logarithm of each number y and plot the logarithms against the year x.
The linear pattern confirms that the growth is exponential.

(d) Verify that the least-squares line fitted to the transformed data is

log ŷ = –1094.51 + 0.5558 � year

(e) Construct and interpret a residual plot for log ŷ on year.

(f) Perform the inverse transformation to express ŷ as an exponential equation.
Display a scatterplot of the original data with the exponential curve model super-
imposed. Is your exponential function a satisfactory model for the data?

(g) Use your model to predict the number of acres defoliated in 1982.

(Postscript: A viral disease reduced the gypsy moth population between the readings in
1981 and 1982. The actual count of defoliated acres in 1982 was 1,383,265.)

4.7 MOORE’S LAW, I Gordon Moore, one of the founders of Intel Corporation, predicted
in 1965 that the number of transistors on an integrated circuit chip would double every
18 months.  This is “Moore’s law,’’ one way to measure the revolution in computing.
Here are data on the dates and number of transistors for Intel microprocessors:8

Processor Date Transistors Processor Date Transistors

4004 1971 2,250 486 DX 1989 1,180,000
8008 1972 2,500 Pentium 1993 3,100,000
8080 1974 5,000 Pentium II 1997 7,500,000
8086 1978 29,000 Pentium III 1999 24,000,000
286 1982 120,000 Pentium 4 2000 42,000,000
386 1985 275,000 

(a) Explain why Moore’s law says that the number of transistors grows exponentially
over time.
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(b) Make a plot suitable to check for exponential growth. Does it appear that the num-
ber of transistors on a chip has in fact grown approximately exponentially?

4.8 MOORE’S LAW, II Return to Moore’s law, described in Exercise 4.7.

(a) Find the least-squares regression line for predicting the logarithm of the number
of transistors on a chip from the date. Before calculating your line, subtract 1970 from
all the dates so that 1971 becomes year 1, 1972 is year 2, and so on.

(b) Suppose that Moore’s law is exactly correct.  That is, the number of transistors is 2250
in year 1 (1971) and doubles every 18 months (1.5 years) thereafter. Write the model for
predicting transistors in year x after 1970. What is the equation of the line that, according
to your model, connects the logarithm of transistors with x? Explain why a comparison of
this line with your regression line from (a) shows that although transistor counts have
grown exponentially, they have grown a bit more slowly than Moore’s law predicts.

4.9 E. COLI (Exact exponential growth) The common intestinal bacterium E. coli is
one of the fastest-growing bacteria. Under ideal conditions, the number of E. coli in a
colony doubles about every 15 minutes until restrained by lack of resources. Starting
from a single bacterium, how many E. coli will there be in 1 hour? In 5 hours?

4.10 GUN VIOLENCE (Exact exponential growth) A paper in a scholarly journal once
claimed (I am not making this up), “Every year since 1950, the number of American
children gunned down has doubled.’’9 To see that this is silly, suppose that in 1950 just
1 child was “gunned down’’ and suppose that the paper’s claim is exactly right.

(a) Make a table of the number of children killed in each of the next 10 years, 1951 to 1960.

(b) Plot the number of deaths against the year and connect the points with a smooth
curve. This is an exponential curve.

(c) The paper appeared in 1995, 45 years after 1950. How many children were killed
in 1995, according to the paper?

(d) Take the logarithm of each of your counts from (a). Plot these logarithms against
the year. You should get a straight line.

(e) From your graph in (d) find the approximate values of the slope b and the inter-
cept a for the line. Use the equation y = a + bx to predict the logarithm of the count
for the 45th year. Check your result by taking the logarithm of the count you found
in (c).

4.11 U.S. POPULATION The following table gives the resident population of the United
States from 1790 to 2000, in millions of persons:

Date Pop. Date Pop. Date Pop. Date Pop.

1790 3.9 1850 23.2 1910 92.0 1970 203.3
1800 5.3 1860 31.4 1920 105.7 1980 226.5
1810 7.2 1870 39.8 1930 122.8 1990 248.7
1820 9.6 1880 50.2 1940 131.7 2000 281.4
1830 12.9 1890 62.9 1950 151.3
1840 17.1 1900 76.0 1960 179.3
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(a) Plot population against time. The growth of the American population appears
roughly exponential.

(b) Plot the logarithms of population against time. The pattern of growth is now clear.
An expert says that “the population of the United States increased exponentially from
1790 to about 1880. After 1880 growth was still approximately exponential, but at a
slower rate.’’ Explain how this description is obtained from the graph.

(c) Use part or all the data to construct  an exponential model for the purpose of
predicting the population in 2010. Justify your modeling decision. Then predict the
population in the year 2010. Do you think your prediction will be too low or too
high? Explain.

(d) Construct a residual plot for the transformed data. What is the value of r2 for the
transformed data?

(e) Comment on the quality of your model.

Power law models
When you visit a pizza parlor, you order a pizza by its diameter, say 10 inches,
12 inches, or 14 inches. But the amount you get to eat depends on the area of
the pizza. The area of a circle is � times the square of its radius.  So the area
of a round pizza with diameter x is

area = �r2 = �(x/2)2 = �(x2/4) = (�/4)x2

This is a power law model of the form

y = a � xp

When we are dealing with things of the same general form, whether circles or
fish or people, we expect area to go up with the square of a dimension such as
diameter or height.  Volume should go up with the cube of a linear dimension.
That is, geometry tells us to expect power laws in some settings.

Biologists have found that many characteristics of living things are
described quite closely by power laws.  There are more mice than elephants,
and more flies than mice—the abundance of species follows a power law with
body weight as the explanatory variable. So do pulse rate, length of life, the
number of eggs a bird lays, and so on. Sometimes the powers can be predicted
from geometry, but sometimes they are mysterious. Why, for example, does the
rate at which animals use energy go up as the 3/4 power of their body weight?
Biologists call this relationship Kleiber’s law. It has been found to work all the
way from bacteria to whales. The search goes on for some physical or geomet-
rical explanation for why life follows power laws. There is as yet no general
explanation, but power laws are a good place to start in simplifying relation-
ships for living things.

power law model
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Exponential growth models become linear when we apply the logarithm
transformation to the response variable y. Power law models become linear when
we apply the logarithm transformation to both variables. Here are the details:

1. The power law model is

y = a � xp

2. Take the logarithm of both sides of this equation. You see that

log y = log a + p log x

That is, taking the logarithm of both variables straightens the scatterplot of y
against x.

3. Look carefully: The power p in the power law becomes the slope of the
straight line that links log y to log x.

Prediction in power law models
If taking the logarithms of both variables makes a scatterplot linear, a power law
is a reasonable model for the original data.  We can even roughly estimate what
power p the law involves by regressing log y on log x and using the slope of the
regression line as an estimate of the power. Remember that the slope is only an
estimate of the p in an underlying power model. The greater the scatter of the
points in the scatterplot about the fitted line, the smaller our confidence that
this estimate is accurate.

The magical success of the logarithm transformation in Example 4.1 on page 195
would not surprise a biologist. We suspect that a power law governs this relationship.
Least-squares regression for the scatterplot in Figure 4.3 on page 196 gives the line

log ŷ = 1.01 + 0.72 � log x

for predicting the logarithm of brain weight from the logarithm of body weight. To
undo the logarithm transformation, remember that for common logarithms with
base 10, y = 10log y. We see that

ŷ = 101.01 + 0.72 log x

= 101.01 � 100.72 log x

= 10.2 � (10log x)0.72

Because 10log x = x, the estimated power model connecting predicted brain weight ŷ
with body weight x for mammals is

EXAMPLE 4.8 PREDICTING BRAIN WEIGHT
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Imagine that you have been put in charge of organizing a fishing tournament in which
prizes will be given for the heaviest fish caught. You know that many of the fish caught
during the tournament will be measured and released. You are also aware that trying
to weigh a fish that is flipping around, in a boat that is rolling with the swells, using
delicate scales will probably not yield very reliable results.

It would be much easier to measure the length of the fish on the boat. What you
need is a way to convert the length of the fish to its weight. You reason that since length
is one-dimensional and weight is three-dimensional, and since a fish 0 units long
would weigh 0 pounds, the weight of a fish should be proportional to the cube of its
length. Thus, a model of the form weight = a � length3 should work. You contact the
nearby marine research laboratory and they provide the average length and weight
catch data for the Atlantic Ocean rockfish Sebastes mentella (Table 4.3).10 The lab also
advises you that the model relationship between body length and weight has been
found to be accurate for most fish species growing under normal feeding conditions.

TABLE 4.3 Average length and weight at different ages for Atlantic Ocean rockfish,
Sebastes mentella

Age (yr) Length (cm) Weight (g) Age (yr) Length (cm) Weight (g)

1 5.2 2 11 28.2 318
2 8.5 8 12 29.6 371
3 11.5 21 13 30.8 455
4 14.3 38 14 32.0 504
5 16.8 69 15 33.0 518
6 19.2 117 16 34.0 537
7 21.3 148 17 34.9 651
8 23.3 190 18 36.4 719
9 25.0 264 19 37.1 726

10 26.7 293 20 37.7 810

EXAMPLE 4.9 FISHING TOURNAMENT

ŷ = 10.2 � x0.72

Based on footprints and some other sketchy evidence, some people think that a
large apelike animal, called Sasquatch or Bigfoot, lives in the Pacific Northwest. His
weight is estimated to be about 280 pounds, or 127 kilograms. How big is Bigfoot’s
brain? Based on the power law estimated from data on other mammals, we predict

ŷ = 10.2 � 1270.72

= 10.2 � 32.7
= 333.7 grams

For comparison, gorillas have an average body weight of about 140 kilograms and an
average brain weight of about 406 grams. Of course, Bigfoot may have a larger brain
than his weight predicts—after all, he has avoided being captured, shot, or videotaped
for many years.
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FIGURE 4.15 Scatterplot of log(weight) versus log(length).
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FIGURE 4.14 Scatterplots of Atlantic Ocean rockfish weight versus length.

Figure 4.14 is a scatterplot of weight in grams versus height in centimeters. Although
the growth might appear to be exponential, we know that it is frequently misleading to
trust too much to the eye. Moreover, we have already decided on a model that makes
sense in this context: weight = a � length3.

If we take the log10 of both sides, we obtain

log(weight) = log a + [3 � log(length)]

This equation looks like a linear equation

Y = A + BX

so we plot log(weight) against log(length). See Figure 4.15.

We visually confirm that the relationship appears very linear. We perform a least-
squares regression on the transformed points [log(length), log(weight)].

The least-squares regression line equation is

log(weight) = –1.8994 + 3.0494 log(length) 

r = 0.99926 and r2 = 0.9985. We see that the correlation r of the logarithms of length
and weight is virtually 1. (Remember, however, that correlation was defined only for
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linear fits.) Despite the very high r-value, it’s still important to look at a residual plot.
The random scatter of the points in Figure 4.16 tells us that the line is a good model
for the logs of length and weight. 
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FIGURE 4.17 Atlantic Ocean rockfish data with power law model.
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FIGURE 4.16 Plot of residuals versus log(length).

The last step is to perform an inverse transformation on the linear regression equation:

log(weight) = –1.8994 + [3.0494 log(length)]  
= –1.8994 + log(length)3.0494

This is the critical step: to remember to use a property of logarithms to write the mul-
tiplicative constant 3.0494 as an exponent. Let’s continue. Raise 10 to the left side of
the equation and set this equal to 10 raised to the right side:

weight = 10–1.8994 � length3.0494

This is the final power equation for the original data. 
The scatterplot of the original data along with the power law model appears in

Figure 4.17. The fit of this model has visual appeal. We will leave it as an exercise to
calculate the sum of the squares of the deviations. It should be noted that the power
of x that we obtained for the model, 3.0494, is very close to the value 3 that we con-
jectured when we proposed the form for our model.

10 10 1 8994 3 0494log(weight) log(length)= − +. .
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EXERCISES
4.12 FISH WEIGHTS

(a) Use the model we derived for approximating the weight of Sebastes mentella,
ŷ = 10–1.8994x3.0494, to determine the sum of the squares of the deviations between
the observed weights (in grams) and the predicted values. Did we minimize
this quantity in the process of constructing our model? If not, what quantity was
minimized?

(b) When we performed least-squares regression of log(weight) on log(length) on
the calculator, residuals were calculated and stored in a list named RESID. Use
this list and the 1-Var Stats command to calculate the sum of the squares of the
residuals. Compare this sum of squares with the sum of squares you calculated 
in (a).

(c) Would you expect the answers in (a) and (b) to be the same or different?
Explain.

4.13 BODY WEIGHT AND LIFETIME Table 4.4 gives the average weight and average life
span in captivity for several species of mammals. Some writers on power laws in biol-
ogy claim that life span depends on body weight according to a power law with power

• Enter the x data (explanatory) into L1/list1 and
the y data (response) into L2/list2.

• Produce a scatterplot of y versus x. Confirm a
nonlinear trend that could be modeled by a power
function in the form y = axb.

• Define L3/list3 to be log(L1) or log(list1), and
define L4/list4 to be log(L2) or log(list2).

• Plot log y versus log x. Verify that the pattern is
approximately linear.

• Regress log y on log x. The command line
should read LinReg a+bx,L3,L4,Y1. This stores the
regression equation as Y1. Remember that Y1 is
really log y. Check the r2-value.

• Construct a residual plot, in the form of either
RESID versus x or RESID versus predicted values
(fits). Ideally, the points in a residual plot should
be randomly scattered above and below the y = 0
reference line.
• Perform the back-transformation to find the
power function y = axb that models the original
data. Define Y2 to be (10^a)(x^b). The calcula-
tor has stored the values of a and b for the most
recent regression performed. Deselect Y1 and
plot Y2 and the scatterplot for the original data
together. 
• To make a prediction for the value x = k, evalu-
ate Y2(k) in the Home screen.

TECHNOLOGY TOOLBOX Power law modeling

The original purpose for developing this model was to approximate the weight of
a fish given its length. Suppose your catch measured 36 centimeters. Our model pre-
dicts a weight of Y2(36) = 702.0836281, or about 702 grams. If you entered a fishing
contest, would you be comfortable with this procedure for determining the weights of
the fish caught, and hence for determining the winner of the contest?



TABLE 4.4 Body weight and lifetime for several species of mammals

Weight Life span Weight Life span
Species (kg) (years) Species (kg) (years)

Baboon 32 20 Guinea pig 1 4
Beaver 25 5 Hippopotamus 1400 41
Cat, domestic 2.5 12 Horse 480 20
Chimpanzee 45 20 Lion 180 15
Dog 8.5 12 Mouse, house 0.024 3
Elephant 2800 35 Pig, domestic 190 10
Goat, domestic 30 8 Red fox 6 7
Gorilla 140 20 Sheep, domestic 30 12
Grizzly bear 250 25

Source: G. A. Sacher and E. F. Staffelt, “Relation of gestation time to brain weight for placental mammals:
implications for the theory of vertebrate growth,” American Naturalist, 108 (1974),  pp. 593–613. We found
these data in F. L. Ramsey and D. W. Schafer, The Statistical Sleuth: A Course in Methods of Data Analysis,
Duxbury, 1997.

p = 0.2. Fit a power law model to these data (using logarithms). Does this small set of
data appear to follow a power law with power close to 0.2? Use your fitted model to pre-
dict the average life span for humans (average weight 143 kilograms). Humans are an
exception to the rule.

4.14 HEART WEIGHTS OF MAMMALS Use the methods discussed in this section to analyze
the following data on the hearts of various mammals.11 Write your findings and con-
clusions in a short narrative.

Heart weight Length of cavity of left 
Mammal (grams) ventricle (centimeters)

Mouse 0.13 0.55
Rat 0.64 1.0
Rabbit 5.8 2.2
Dog 102 4.0
Sheep 210 6.5
Ox 2030 12.0
Horse 3900 16.0

4.15 The U.S. Department of Health and Human Services characterizes adults as
“seriously overweight” if they meet certain criterion for their height as shown in the
table below (only a portion of the chart is reproduced here).

Height Height Severely Height Height Severely
(ft, in) (in) overweight (lb) (ft, in) (in) overweight (lb)

4�10� 58 138 5�8� 68 190
5�0� 60 148 6�0� 72 213
5�2� 62 158 6�2� 74 225
5�4� 64 169 6�4� 76 238
5�6� 66 179 6�6� 78 250

220 Chapter 4 More on Two-Variable Data
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Weights are given in pounds, without clothes. Height is measured without shoes.
There is no distinction between men and women; a note accompanying the table
states, “The higher weights apply to people with more muscle and bone, such as many
men.” Despite any reservations you may have about the department’s common stan-
dards for both genders, do the following:

(a) Without looking at the data, hypothesize a relationship between height and weight
of U.S. adults. That is, write a general form of an equation that you believe will model
the relationship.

(b) Which variable would you select as explanatory and which would be the response?
Plot the data from the table.

(c) Perform a transformation to linearize the data. Do a least-squares regression on the
transformed data and check the correlation coefficient.

(d) Construct a residual plot of the transformed data. Interpret the residual plot.

(e) Perform the inverse transformation and write the equation for your model. Use
your model to predict how many pounds a 5�10� adult would have to weigh in order
to be classified by the department as “seriously overweight.” Do the same for a 7-foot
tall individual.

4.16 THE PRICE OF PIZZAS The new manager of a pizza restaurant wants to add variety to
the pizza offerings at the restaurant. She also wants to determine if the prices for exist-
ing sizes of pizzas are consistent. Prices for plain (cheese only) pizzas are shown below:

Size Diameter (inches) Cost

Small 10 $4.00
Medium 12 $6.00
Large 14 $8.00 
Giant 18 $10.00

(a) Construct an appropriate model for these data. Comment on your choice of
model.

(b) Based on your analysis, would you advise the manager to adjust the price on any
of the pizza sizes? If so, explain briefly.

(c) Use your model to suggest a price for a new “personal pizza,” with a 6-inch diam-
eter.

(d) Use your model to suggest a price for a new “soccer team” size, with a 24-inch
diameter (assuming the oven is large enough to hold it).

SUMMARY

Nonlinear relationships between two quantitative variables can sometimes be
changed into linear relationships by transforming one or both of the variables.

The most common transformations belong to the family of power trans-
formations t p. The logarithm log t fits into the power family at position p = 0.

When the variable being transformed takes only positive values, the
power transformations are all monotonic. This implies that there is an
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inverse transformation that returns to the original data from the transformed
values. The effect of the power transformations on data becomes stronger as
we move away from linear transformations (p = 1) in either direction.

Transformation is particularly effective when there is reason to think that
the data are governed by some mathematical model. The exponential
growth model y = abx becomes linear when we plot log y against x. The
power law model y = axp becomes linear when we plot log y against log x.  

We can fit exponential growth and power models to data by finding the
least-squares regression line for the transformed data, then doing the inverse
transformation.

SECTION 4.1 EXERCISES

4.17 EXACT EXPONENTIAL GROWTH, I Maria is given a savings bond at birth. The bond is
initially worth $500 and earns interest at 7.5% each year. This means that the value is
multiplied by 1.075 each year.

(a) Find the value of the bond at the end of 1 year, 2 years, and so on up to 10 years.

(b) Plot the value y against years x. Connect the points with a smooth curve. This is
an exponential curve.

(c) Take the logarithm of each of the values y that you found in (a). Plot the logarithm
log y against years x. You should obtain a straight line.

4.18 EXACT EXPONENTIAL GROWTH, II Fred and Alice were born the same year, and each
began life with $500. Fred added $100 each year, but earned no interest. Alice added
nothing, but earned interest at 7.5% annually. After 25 years, Fred and Alice are get-
ting married. Who has more money?

4.19 FISH IN FINLAND, I Here are data for 12 perch caught in a lake in Finland:12

Weight Length Width Weight Length Width 
(grams) (cm) (cm) (grams) (cm) (cm) 

5.9 8.8 1.4 300.0 28.7 5.1
100.0 19.2 3.3 300.0 30.1 4.6
110.0 22.5 3.6 685.0 39.0 6.9 
120.0 23.5 3.5 650.0 41.4 6.0 
150.0 24.0 3.6 820.0 42.5 6.6 
145.0 25.5 3.8 1000.0 46.6 7.6

(a) Make a scatterplot of weight against length. Describe the pattern you see.

(b) How do you expect the weight of animals of the same species to change as their
length increases? Make a transformation of weight that should straighten the plot if
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your expectation is correct. Plot the transformed weights against length. Is the plot now
roughly linear?

4.20 FISH IN FINLAND, II Plot the widths of the 12 perch in the previous problem
against their lengths. What is the pattern of the plot? Explain why we should expect
this pattern.

4.21 HOW MOLD GROWS, I Do mold colonies grow exponentially? In an investigation of
the growth of molds, biologists inoculated flasks containing a growth medium with
equal amounts of spores of the mold Aspergillus nidulans. They measured the size of
a colony by analyzing how much remains of a radioactive tracer substance that is con-
sumed by the mold as it grows. Each size measurement requires destroying that colony,
so that the data below refer to 30 separate colonies. To smooth the pattern, we take the
mean size of the three colonies measured at each time.13

Hours Colony sizes Mean

0 1.25 1.60 0.85 1.23
3 1.18 1.05 1.32 1.18
6 0.80 1.01 1.02 0.94
9 1.28 1.46 2.37 1.70

12 2.12 2.09 2.17 2.13
15 4.18 3.94 3.85 3.99
18 9.95 7.42 9.68 9.02
21 16.36 13.66 12.78 14.27
24 25.01 36.82 39.83 33.89
36 138.34 116.84 111.60 122.26

(a) Graph the mean colony size against time. Then graph the logarithm of the mean
colony size against time.

(b) On the basis of data such as these, microbiologists divide the growth of mold
colonies into three phases that follow each other in time. Exponential growth occurs
during only one of these phases. Briefly describe the three phases, making specific
reference to the graphs to support your description.

(c) The exponential growth phase for these data lasts from about 6 hours to about 24
hours. Find the least-squares regression line of the logarithms of mean size on hours
for only the data between 6 and 24 hours. Use this line to predict the size of a colony
10 hours after inoculation. (The line predicts the logarithm. You must obtain the size
from its logarithm.)

4.22 DETERMINING TREE BIOMASS It is easy to measure the “diameter at breast height” of
a tree. It’s hard to measure the total “aboveground biomass” of a tree, because to do
this you must cut and weigh the tree. The biomass is important for studies of ecology,
so ecologists commonly estimate it using a power law. Combining data on 378 trees in
tropical rain forests gives this relationship between biomass y measured in kilograms
and diameter x measured in centimeters:14



224 Chapter 4 More on Two-Variable Data

loge y = –2.00 + 2.42 loge x

Note that the investigators chose to use natural logarithms, with base e = 2.71828,
rather than common logarithms with base 10.

(a) Translate the line given into a power model. Use the fact that for natural loga-
rithms,

(b) Estimate the biomass of a tropical tree 30 centimeters in diameter.

4.23 HOW MOLD GROWS, II Find the correlation between the logarithm of mean size
and hours for the data between 6 and 24 hours in Exercise 4.21. Make a scatterplot
of the logarithms of the individual size measurements against hours for this same period
and find the correlation. Why do we expect the second r to be smaller? Is it in fact
smaller?

4.24 BE LIKE GALILEO Galileo studied motion by rolling balls down ramps. Newton
later showed how Galileo’s data fit his general laws of motion. Imagine that you are
Galileo, without Newton’s laws to guide you. He rolled a ball down a ramp at differ-
ent heights above the floor and measured the horizontal distance the ball traveled
before it hit the floor. Here are Galileo’s data when he placed a horizontal shelf at
the end of the ramp so that the ball is moving horizontally when it starts to fall. (We
won’t try to describe the obscure seventeenth-century units Galileo used to measure
distance.)15

Distance Height

1500 1000
1340 828
1328 800
1172 600

800 300

Plot distance y against height x. The pattern is very regular, as befits data described by
a physical law. We want to find distance as a function of height. That is, we want to
transform x to straighten the graph.

(a) Think before you calculate: Will powers xp for p � 1 or p � 1 tend to straighten
the graph. Why?

(b) Move along the ladder of transformations in the direction you have chosen until
the graph is nearly straight. What transformation do you suggest?

4.25 SEED PRODUCTION Table 4.5 gives data on the mean number of seeds produced in
a year by several common tree species and the mean weight (in milligrams) of the
seeds produced. (Some species appear twice because their seeds were counted in two
locations.) We might expect that trees with heavy seeds produce fewer of them, but
what is the form of the relationship?

y e e y= log
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TABLE 4.5 Count and weight of seeds produced by common tree species 

Seed Seed Seed Seed 
Tree species count weight (mg) Tree species count weight (mg)

Paper birch 27,239 0.6 American beech 463 247
Yellow birch 12,158 1.6 American beech 1,892 247
White spruce 7,202 2.0 Black oak 93 1,851
Engelmann spruce 3,671 3.3 Scarlet oak 525 1,930
Red spruce 5,051 3.4 Red oak 411 2,475
Tulip tree 13,509 9.1 Red oak 253 2,475
Ponderosa pine 2,667 37.7 Pignut hickory 40 3,423
White fir 5,196 40.0 White oak 184 3,669
Sugar maple 1,751 48.0 Chestnut oak 107 4,535
Sugar pine 1,159 216.0

Source: Data from many studies compiled in D. F. Greene and E. A. Johnson, “Estimating the mean annu-
al seed production of trees,” Ecology, 75 (1994), pp. 642–647.

(a) Make a scatterplot showing how the weight of tree seeds helps explain how many
seeds the tree produces. Describe the form, direction, and strength of the relationship.

(b) If a power law holds for this relationship, the logarithms of the original data will
display a linear pattern. Use your calculator or software to obtain the logarithms of both
the seed weights and the seed counts in Table 4.5. Make a new scatterplot using these
new variables. Now what are the form, direction, and strength of the relationship?

4.26 ACTIVITY 4: THE SPREAD OF CANCER CELLS

(a) Using the data you and your class collected in the chapter-opening activity, use
transformation methods to construct an appropriate model. Show the important
numerical and graphical steps you go through to develop your model, and tie these
together with explanatory narrative to support your choice of a model.

(b) A theoretical analysis might begin as follows: The probability that an individual
malignant cell reproduces is 1/6 each year. Let P = population of cancer cells at time t
and let P0 = population of cancer cells at time t = 0. At the end of Year 1, the popula-
tion is P = P0 + (1/6)P0 = P0(7/6). At the end of Year 2, the population is P = P0(7/6) +
P0(1/6)(7/6) = P0(7/6)2. Continue this line of reasoning to show that the growth equa-
tion after n years is P = P0(7/6)n.

(c) Enter the growth equation into your calculator as Y3, and plot it along with your
exponential model calculated in (a). Specify a thick plotting line for one of the curves.
How do the two exponential curves compare?

4.2 CAUTIONS ABOUT CORRELATION AND REGRESSION
Correlation and regression are powerful tools for describing the relationship
between two variables. When you use these tools, you must be aware of their lim-
itations, beginning with the fact that correlation and regression describe only lin-
ear relationships. Also remember that the correlation r and the least-squares
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regression line are not resistant. One influential observation or incorrectly
entered data point can greatly change these measures. Always plot your data before
interpreting regression or correlation. Here are some other cautions to keep in
mind when you apply correlation and regression or read accounts of their use.

Extrapolation
Suppose that you have data on a child’s growth between 3 and 8 years of age.
You find a strong linear relationship between age x and height y. If you fit a
regression line to these data and use it to predict height at age 25 years, you will
predict that the child will be 8 feet tall. Growth slows down and stops at matu-
rity, so extending the straight line to adult ages is foolish. Few relationships are
linear for all values of x. So don’t stray far from the domain of x that actually
appears in your data.

EXTRAPOLATION

Extrapolation is the use of a regression line for prediction far outside the
domain of values of the explanatory variable x that you used to obtain the
line or curve. Such predictions are often not accurate.

LURKING VARIABLE

A lurking variable is a variable that is not among the explanatory or
response variables in a study and yet may influence the interpretation of
relationships among those variables.

Studies show that men who complain of chest pain are more likely to get detailed tests
and aggressive treatment such as bypass surgery than are women with similar com-
plaints. Is this association between gender and treatment due to discrimination?

EXAMPLE 4.10 DISCRIMINATION IN MEDICAL TREATMENT?

Lurking variables
In our study of correlation and regression we looked at just two variables at a
time. Often the relationship between two variables is strongly influenced by
other variables. More advanced statistical methods allow the study of many
variables together, so that we can take other variables into account. But some-
times the relationship between two variables is influenced by other variables
that we did not measure or even think about. Because these variables are lurk-
ing in the background, we call them lurking variables.

A lurking variable can falsely suggest a strong relationship between x and y,
or it can hide a relationship that is really there. Here are examples of each of
these effects.
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FIGURE 4.18 The variables in this scatterplot have a small correlation even though there is a

strong correlation within each of the clusters.

A study of housing conditions in the city of Hull, England, measured a large number
of variables for each of the wards in the city. Two of the variables were a measure x of
overcrowding and a measure y of the lack of indoor toilets. Because x and y are both
measures of inadequate housing, we expect a high correlation. In fact the correlation
was only r = 0.08. How can this be?

Investigation found that some poor wards had a lot of public housing. These
wards had high values of x but low values of y because public housing always
includes indoor toilets. Other poor wards lacked public housing, and these wards
had high values of both x and y. Within wards of each type, there was a strong posi-
tive association between x and y. Analyzing all wards together ignored the lurking
variable—amount of public housing—and hid the nature of the relationship
between x and y.17

Figure 4.18 shows in simplified form how groups formed by a lurking variable can
make correlation and regression misleading. The groups appear as clusters of points in
the scatterplot. There is a strong relationship between x and y within each of the clus-
ters. In fact, r = 0.85 and r = 0.91 in the two clusters. However, because similar values
of x correspond to quite different values of y in the two clusters, x alone is of little value
for predicting y. The correlation for all the points together is only r = 0.14.

EXAMPLE 4.11 MEASURING INADEQUATE HOUSING

Perhaps not. Men and women develop heart problems at different ages—women
are on the average between 10 and 15 years older than men. Aggressive treatments are
more risky for older patients, so doctors may hesitate to advise them. Lurking variables—
the patient’s age and condition—may explain the relationship between gender and
doctors’ decisions. As the author of one study of the issue said, “When men and
women are otherwise the same and the only difference is gender, you find that treat-
ments are very similar.”16
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FIGURE 4.19 Enrollment in elementary math classes.

The mathematics department of a large state university must plan the number of sections
and instructors required for its elementary courses. The department hopes that the number
of students in these courses can be predicted from the number of first-year students, which
is known before the new students actually choose courses. The table below contains data for
several years.18 The explanatory variable x is the number of first-year students. The response
variable y is the number of students who enroll in elementary mathematics courses.

Year 1993 1994 1995 1996 1997 1998 1999 2000

x 4595 4827 4427 4258 3995 4330 4265 4351
y 7364 7547 7099 6894 6572 7156 7232 7450

A scatterplot (Figure 4.19) shows a reasonably linear pattern with a cluster of points
near the center. We use regression software to obtain the equation of the least-
squares regression line:

ŷ = 2492.69 + 1.0663x

EXAMPLE 4.12 PREDICTING ENROLLMENT

The software also tells us that r2 = 0.694. That is, linear dependence on x explains
about 70% of the variation in y. The line appears to fit reasonably well.

Never forget that the relationship between two variables can be strongly
influenced by other variables that are lurking in the background. Lurking vari-
ables can dramatically change the conclusions of a regression study. Because
lurking variables are often unrecognized and unmeasured, detecting their effect
is a challenge. Many lurking variables change systematically over time. One use-
ful method for detecting lurking variables is therefore to plot both the response
variable and the regression residuals against the time order of the observations
whenever the time order is available. An understanding of the background of the
data then allows you to guess what lurking variables might be present. Here is an
example of plotting and interpreting residuals that uncovered a lurking variable.
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A second plot of the residuals clarifies the situation. Figure 4.21 is a plot of the
residuals against year. We now see that the five negative residuals are from the years
1993 to 1997, and the three positive residuals represent the years 1998 to 2000. This
plot suggests that a change took place between 1997 and 1998 that caused a higher pro-
portion of students to take mathematics courses beginning in 1998. In fact, one of the
schools in the university changed its program to require that entering students take
another mathematics course. This change is the lurking variable that explains the pat-
tern we observed. The mathematics department should not use data from years before
1998 for predicting future enrollment.

FIGURE 4.20 Residual plot.
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FIGURE 4.21 Plot of residuals versus year.

A plot of the residuals against x (Figure 4.20) magnifies the vertical deviations of
the points from the line. We can see that a somewhat different line would fit the five
lower points well. The three points above the line represent a different relation
between the number of first-year students x and mathematics enrollments y.



Using averaged data
Many regression or correlation studies work with averages or other measures
that combine information from many individuals. You should note this care-
fully and resist the temptation to apply the results of such studies to individu-
als. We have seen, starting with Figure 3.2 (page 128), a strong relationship
between outside temperature and the Sanchez household’s natural gas con-
sumption. Each point on the scatterplot represents a month. Both degree-
days and gas consumed are averages over all the days in the month. Data for
individual days would show more scatter about the regression line and lower
correlation. Averaging over an entire month smooths out the day-to-day varia-
tion due to doors left open, houseguests using more gas to heat water, and so
on. Correlations based on averages are usually too high when applied to indi-
viduals. This is another reminder that it is important to note exactly what vari-
ables were measured in a statistical study.

EXERCISES
4.27 THE SIZE OF AMERICAN FARMS The number of people living on American farms has
declined steadily during this century. Here are data on the farm population (millions
of persons) from 1935 to 1980.

Year: 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980
Population: 32.1 30.5 24.4 23.0 19.1 15.6 12.4 9.7 8.9 7.2

(a) Make a scatterplot of these data and find the least-squares regression line of farm
population on year.

(b) According to the regression line, how much did the farm population decline each
year on the average during this period? What percent of the observed variation in farm
population is accounted for by linear change over time?

(c) Use the regression equation to predict the number of people living on farms in
1990. Is this result reasonable? Why?

4.28 THE POWER OF HERBAL TEA A group of college students believes that herbal tea has
remarkable powers. To test this belief, they make weekly visits to a local nursing home,
where they visit with the residents and serve them herbal tea. The nursing home staff
reports that after several months many of the residents are more cheerful and healthy.
A skeptical sociologist commends the students for their good deeds but scoffs at the
idea that herbal tea helped the residents. Identify the explanatory and response vari-
ables in this informal study. Then explain what lurking variables account for the
observed association.

4.29 STRIDE RATE The data in Exercise 3.71 (page 187) give the average steps per sec-
ond for a group of top female runners at each of several running speeds. There is a high
positive correlation between steps per second and speed. Suppose that you had the full
data, which record steps per second for each runner separately at each speed. If you
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plotted each individual observation and computed the correlation, would you expect
the correlation to be lower than, about the same as, or higher than the correlation for
the published data? Why?

4.30 HOW TO SHORTEN A HOSPITAL STAY A study shows that there is a positive correlation
between the size of a hospital (measured by its number of beds x) and the median
number of days y that patients remain in the hospital. Does this mean that you can
shorten a hospital stay by choosing a small hospital?

4.31 STOCK MARKET INDEXES The Standard & Poor’s 500-stock index is an average of the
price of 500 stocks. There is a moderately strong correlation (roughly r = 0.6) between
how much this index changes in January and how much it changes during the entire
year. If we looked instead at data on all 500 individual stocks, we would find a quite
different correlation. Would the correlation be higher or lower? Why?

4.32 GOLF SCORES Here are the golf scores of 11 members of a women’s golf team in
two rounds of tournament play:

Player 1 2 3 4 5 6 7 8 9 10 11

Round 1 89 90 87 95 86 81 105 83 88 91 79
Round 2 94 85 89 89 81 76 89 87 91 88 80

(a) Plot the data with the Round 1 scores on the x axis and the Round 2 scores on the
y axis. There is a generally linear pattern except for one potentially influential obser-
vation. Circle this observation on your graph.

(b) Here are the equations of two least-squares lines. One of them is calculated from
all 11 data points and the other omits the influential observation.

ŷ = 20.49 + 0.754x
ŷ = 50.01 + 0.410x

Draw both lines on your scatterplot. Which line omits the influential observation?
How do you know this?

The question of causation
In many studies of the relationship between two variables, the goal is to
establish that changes in the explanatory variable cause changes in the
response variable. Even when a strong association is present, the conclusion
that this association is due to a causal link between the variables is often elu-
sive. What ties between two variables (and others lurking in the background)
can explain an observed association? What constitutes good evidence for cau-
sation? We begin our consideration of these questions with a set of examples.
In each case, there is a clear association between an explanatory variable x
and a response variable y. Moreover, the association is positive whenever the
direction makes sense.
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Items 1 and 2 in Example 4.13 are examples of direct causation. Thinking about these
examples, however, shows that “causation” is not a simple idea.

EXAMPLE 4.14 CAUSATION?

Explaining association: causation
Figure 4.22 shows in outline form how a variety of underlying links between vari-
ables can explain association. The dashed line represents an observed association
between the variables x and y. Some associations are explained by a direct cause-
and-effect link between these variables. The first diagram in Figure 4.22 shows “x
causes y” by a solid arrow running from x to y.

x y x y
?

x y

z z

Common response

(b)

Causation

(a)

Confounding

(c)

FIGURE 4.22 Variables x and y show a strong association (dashed line). This association
may be the result of any of several causal relationships (solid arrow). (a) Causation:

Changes in x cause changes in y. (b) Common response: Changes in both x and y are

caused by changes in a lurking variable z. (c) Confounding: The effect (if any) of x on y is

confounded with the effect of a lurking variable z.

The following are some examples of observed associations between x and y:

1. x = mother’s body mass index 
y = daughter’s body mass index

2. x = amount of the artificial sweetener saccharin in a rat’s diet 
y = count of tumors in the rat’s bladder

3. x = a high school senior’s SAT score
y = the student’s first-year college grade point average

4. x = monthly flow of money into stock mutual funds 
y = monthly rate of return for the stock market

5. x = whether a person regularly attends religious services
y = how long the person lives

6. x = the number of years of education a worker has 
y = the worker’s income

EXAMPLE 4.13 ASSOCIATIONS
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Explaining association: common response
“Beware the lurking variable” is good advice when thinking about an association
between two variables. The second diagram in Figure 4.22 illustrates common
response. The observed association between the variables x and y is explained by
a lurking variable z. Both x and y change in response to changes in z. This com-
mon response creates an association even though there may be no direct causal
link between x and y. 

common response

The third and fourth items in Example 4.13 illustrate how common response can cre-
ate an association.

3. Students who are smart and who have learned a lot tend to have both high SAT
scores and high college grades. The positive correlation is explained by this common
response to students’ ability and knowledge.

4. There is a strong positive correlation between how much money individuals add to
mutual funds each month and how well the stock market does the same month. Is the
new money driving the market up? The correlation may be explained in part by com-
mon response to underlying investor sentiment: when optimism reigns, individuals
send money to funds and large institutions also invest more. The institutions would
drive up prices even if individuals did nothing. In addition, what causation there is may
operate in the other direction: when the market is doing well, individuals rush to add
money to their mutual funds.21

EXAMPLE 4.15 COMMON RESPONSE

1. A study of Mexican American girls aged 9 to 12 years recorded body mass index
(BMI), a measure of weight relative to height, for both the girls and their mothers.
People with high BMI are overweight or obese. The study also measured hours of
television, minutes of physical activity, and intake of several kinds of food. The
strongest correlation (r = 0.506) was between the BMI of daughters and the BMI of
their mothers.19

Body type is in part determined by heredity. Daughters inherit half their genes
from their mothers. There is therefore a direct causal link between the BMI of moth-
ers and daughters. Yet the mothers’ BMIs explain only 25.6% (that’s r2 again) of the
variation among the daughters’ BMIs. Other factors, such as diet and exercise, also
influence BMI. Even when direct causation is present, it is rarely a complete expla-
nation of an association between two variables.

2. The best evidence for causation comes from experiments that actually change x
while holding all other factors fixed. If y changes, we have good reason to think that x
caused the change in y. Experiments show conclusively that large amounts of saccha-
rin in the diet cause bladder tumors in rats. Should we avoid saccharin as a replace-
ment for sugar in food? Rats are not people. Although we can’t experiment with
people, studies of people who consume different amounts of saccharin show little asso-
ciation between saccharin and bladder tumors.20 Even well-established causal
relations may not generalize to other settings.
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Explaining association: confounding
We noted in Example 4.14 that inheritance no doubt explains part of the associ-
ation between the body mass indexes (BMIs) of daughters and their mothers. Can
we use r or r2 to say how much inheritance contributes to the daughters’ BMIs?
No. It may well be that mothers who are overweight also set an example of little
exercise, poor eating habits, and lots of television. Their daughters pick up these
habits to some extent, so the influence of heredity is mixed up with influences
from the girls’ environment. We call this mixing of influences confounding.

CONFOUNDING

Two variables are confounded when their effects on a response variable
cannot be distinguished from each other. The confounded variables may
be either explanatory variables or lurking variables.

When many variables interact with each other, confounding of several
variables often prevents us from drawing conclusions about causation. The
third diagram in Figure 4.22 illustrates confounding. Both the explanatory
variable x and the lurking variable z may influence the response variable y.
Because x is confounded with z, we cannot distinguish the influence of x from
the influence of z. We cannot say how strong the direct effect of x on y is. In
fact, it can be hard to say if x influences y at all.

The last two associations in Example 4.13 (Items 5 and 6) are explained in part by con-
founding.

5. Many studies have found that people who are active in their religion live longer
than nonreligious people. But people who attend church or mosque or synagogue also
take better care of themselves than nonattenders. They are less likely to smoke, more
likely to exercise, and less likely to be overweight. The effects of these good habits are
confounded with the direct effects of attending religious services.

6. It is likely that more education is a cause of higher income—many highly paid pro-
fessions require advanced education. However, confounding is also present. People
who have high ability and come from prosperous homes are more likely to get many
years of education than people who are less able or poorer. Of course, people who start
out able and rich are more likely to have high earnings even without much education.
We can’t say how much of the higher income of well-educated people is actually
caused by their education.

EXAMPLE 4.16 CONFOUNDING

Many observed associations are at least partly explained by lurking vari-
ables. Both common response and confounding involve the influence of a
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lurking variable (or variables) z on the response variable y. The distinction
between these two types of relationships is less important than the common
element, the influence of lurking variables. The most important lesson of these
examples is one we have already emphasized: even a very strong association
between two variables is not by itself good evidence that there is a cause-
and-effect link between the variables.

Establishing causation
How can a direct causal link between x and y be established? The best
method—indeed, the only fully compelling method—of establishing causa-
tion is to conduct a carefully designed experiment in which the effects of pos-
sible lurking variables are controlled. Much of Chapter 5 is devoted to the art
of designing convincing experiments.

Many of the sharpest disputes in which statistics plays a role involve ques-
tions of causation that cannot be settled by experiment. Does gun control
reduce violent crime? Does living near power lines cause cancer? Has
increased free trade helped to increase the gap between the incomes of more
educated and less educated American workers? All of these questions have
become public issues. All concern associations among variables. And all have
this in common: they try to pinpoint cause and effect in a setting involving
complex relations among many interacting variables. Common response and
confounding, along with the number of potential lurking variables, make
observed associations misleading. Experiments are not possible for ethical or
practical reasons. We can’t assign some people to live near power lines or com-
pare the same nation with and without free-trade agreements.

Electric currents generate magnetic fields. So living with electricity exposes people to
magnetic fields. Living near power lines increases exposure to these fields. Really
strong fields can disturb living cells in laboratory studies. What about the weaker fields
we experience if we live near power lines?

It isn’t ethical to do experiments that expose children to magnetic fields. It’s hard
to compare cancer rates among children who happen to live in more and less exposed
locations, because leukemia is rare and locations vary in many ways other than mag-
netic fields. We must rely on studies that compare children who have leukemia with
children who don’t.

A careful study of the effect of magnetic fields on children took five years and cost
$5 million. The researchers compared 638 children who had leukemia and 620 who
did not. They went into the homes and actually measured the magnetic fields in the
children’s bedrooms, in other rooms, and at the front door. They recorded facts about
nearby power lines for the family home and also for the mother’s residence when she
was pregnant. Result: no evidence of more than a chance connection between mag-
netic fields and childhood leukemia.22

EXAMPLE 4.17 DO POWER LINES INCREASE THE RISK OF LEUKEMIA?
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“No evidence” that magnetic fields are connected with childhood leukemia
doesn’t prove that there is no risk. It says only that a careful study could not find
any risk that stands out from the play of chance that distributes leukemia cases
across the landscape. Critics continue to argue that the study failed to measure
some lurking variables, or that the children studied don’t fairly represent all
children. Nonetheless, a carefully designed study comparing children with and
without leukemia is a great advance over haphazard and sometimes emotional
counting of cancer cases.

Despite the difficulties, it is sometimes possible to build a strong case for causation in
the absence of experiments. The evidence that smoking causes lung cancer is about as
strong as nonexperimental evidence can be. 

Doctors had long observed that most lung cancer patients were smokers.
Comparison of smokers and similar nonsmokers showed a very strong association
between smoking and death from lung cancer. Could the association be due to com-
mon response? Might there be, for example, a genetic factor that predisposes people
both to nicotine addiction and to lung cancer? Smoking and lung cancer would then
be positively associated even if smoking had no direct effect on the lungs. Or perhaps
confounding is to blame. It might be that smokers live unhealthy lives in other ways
(diet, alcohol, lack of exercise) and that some other habit confounded with smoking is
a cause of lung cancer. How were these objections overcome?

EXAMPLE 4.18 DOES SMOKING CAUSE LUNG CANCER?

Let’s answer this question in general terms: What are the criteria for estab-
lishing causation when we cannot do an experiment?

• The association is strong. The association between smoking and lung cancer
is very strong.

• The association is consistent. Many studies of different kinds of people in
many countries link smoking to lung cancer. That reduces the chance that a
lurking variable specific to one group or one study explains the association.

• Higher doses are associated with stronger responses. People who smoke more
cigarettes per day or who smoke over a longer period get lung cancer more
often. People who stop smoking reduce their risk.

• The alleged cause precedes the effect in time. Lung cancer develops after
years of smoking. The number of men dying of lung cancer rose as smoking
became more common, with a lag of about 30 years. Lung cancer kills more
men than any other form of cancer. Lung cancer was rare among women until
women began to smoke. Lung cancer in women rose along with smoking,
again with a lag of about 30 years, and has now passed breast cancer as the lead-
ing cause of cancer death among women.

• The alleged cause is plausible. Experiments with animals show that tars from
cigarette smoke do cause cancer. 



Medical authorities do not hesitate to say that smoking causes lung cancer.
The U.S. Surgeon General states that cigarette smoking is “the largest avoid-
able cause of death and disability in the United States.”23 The evidence for
causation is overwhelming---but it is not as strong as the evidence provided by
well-designed experiments.

EXERCISES
For Exercises 4.33 through 4.37, answer the question. State whether the rela-
tionship between the two variables involves causation, common response, or con-
founding. Identify possible lurking variable(s). Draw a diagram of the relation-
ship in which each circle represents a variable. Write a brief description of the
variable by each circle.

4.33 FIGHTING FIRES Someone says, “There is a strong positive correlation between the
number of firefighters at a fire and the amount of damage the fire does. So sending lots
of firefighters just causes more damage.” Why is this reasoning wrong?

4.34 HOW’S YOUR SELF-ESTEEM? People who do well tend to feel good about themselves.
Perhaps helping people feel good about themselves will help them do better in school
and life. Raising self-esteem became for a time a goal in many schools. California even
created a state commission to advance the cause. Can you think of explanations for the
association between high self-esteem and good school performance other than “Self-
esteem causes better work in school”?

4.35 SAT MATH AND VERBAL SCORES Table 1.15 (page 70) gives education data for the
states. The correlation between the average SAT math scores and the average SAT ver-
bal scores for the states is r = 0.962

(a) Find r2 and explain in simple language what this number tells us.

(b) If you calculated the correlation between the SAT math and verbal scores of a
large number of individual students, would you expect the correlation to be about 0.96
or quite different? Explain your answer.

4.36 BETTER READERS A study of elementary school children, ages 6 to 11, finds a high
positive correlation between shoe size x and score y on a test of reading comprehen-
sion. What explains this correlation?

4.37 THE BENEFITS OF FOREIGN LANGUAGE STUDY Members of a high school language club
believe that study of a foreign language improves a student’s command of English.
From school records, they obtain the scores on an English achievement test given to
all seniors. The mean score of seniors who studied a foreign language for at least two
years is much higher than the mean score of seniors who studied no foreign language.
These data are not good evidence that language study strengthens English skills.
Identify the explanatory and response variables in this study. Then explain what lurk-
ing variable prevents the conclusion that language study improves students’ English
scores.

4.2 Cautions about Correlation and Regression 237
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Correlation and regression must be interpreted with caution. Plot the data to
be sure that the relationship is roughly linear and to detect outliers and influ-
ential observations. Remember that correlation and regression describe only
linear relations.

Avoid extrapolation, which is the use of a regression line or curve for pre-
diction for values of the explanatory variable outside the domain of the data
from which the line was calculated.

Remember that correlations based on averages are usually too high when
applied to individuals.

Lurking variables may explain the relationship between the explanatory
and response variables. Correlation and regression can be misleading if you
ignore important lurking variables.

The effect of lurking variables can operate through common response if
changes in both the explanatory and response variables are caused by changes in
lurking variables. Confounding of two variables (either explanatory or lurking
variables) means that we cannot distinguish their effects on the response variable.

Most of all, be careful not to conclude that there is a cause-and-effect rela-
tionship between two variables just because they are strongly associated. The
relationship could involve common response or confounding. High correla-
tion does not imply causation. The best evidence that an association is due to
causation comes from an experiment in which the explanatory variable is
directly changed and other influences on the response are controlled.

In the absence of experimental evidence be cautious in accepting claims
of causation. Good evidence of causation requires a strong association that
appears consistently in many studies, a clear explanation for the alleged causal
link, and careful examination of possible lurking variables.

SUMMARY

SECTION 4.2 EXERCISES
For Exercises 4.38 through 4.45, carry out the instructions. Then state whether
the relationship between the two variables involves causation, common response,
or confounding. Then identify possible lurking variable(s). Draw a diagram of
the relationship in which each circle represents a variable. By each circle, write
a brief description of the variable.

4.38 DO ARTIFICIAL SWEETENERS CAUSE WEIGHT GAIN? People who use artificial sweeteners in
place of sugar tend to be heavier than people who use sugar. Does this mean that artifi-
cial sweeteners cause weight gain? Give a more plausible explanation for this association.

4.39 DOES EXPOSURE TO INDUSTRIAL CHEMICALS CAUSE MISCARRIAGES? A study showed that
women who work in the production of computer chips have abnormally high numbers
of miscarriages. The union claimed that exposure to chemicals used in production
causes the miscarriages. Another possible explanation is that these workers spend most
of their time standing up. 
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4.40 IS MATH THE KEY TO SUCCESS IN COLLEGE? Here is the opening of a newspaper account
of a College Board study of 15,941 high school graduates:

Minority students who take high school algebra and geometry succeed in college at
almost the same rate as whites, a new study says.

The link between high school math and college graduation is “almost magical,” says
College Board President Donald Stewart, suggesting “math is the gatekeeper for success
in college.”

“These findings,” he says, “justify serious consideration of a national policy to ensure
that all students take algebra and geometry.”24

What lurking variables might explain the association between taking several math
courses in high school and success in college? Explain why requiring algebra and
geometry may have little effect on who succeeds in college.

4.41 ARE GRADES AND TV WATCHING LINKED? Children who watch many hours of television get
lower grades in school on the average than those who watch less TV. Explain clearly why this
fact does not show that watching TV causes poor grades. In particular, suggest some other
variables that may be confounded with heavy TV viewing and may contribute to poor grades.

4.42 MOZART FOR MINORS In 1998, the Kalamazoo (Michigan) Symphony advertised a
“Mozart for Minors” program with this statement: “Question: Which students scored 51
points higher in verbal skills and 39 points higher in math? Answer: Students who had expe-
rience in music.”25 What do you think of the claim that “experience in music” causes
higher test scores?

4.43 RAISING SAT SCORES A study finds that high school students who take the SAT, enroll
in an SAT coaching course, and then take the SAT a second time raise their SAT math-
ematics scores from a mean of 521 to a mean of 561.26 What factors other than “taking
the course causes higher scores” might explain this improvement?

4.44 ECONOMISTS’ EDUCATION AND INCOME There is a strong positive correlation between
years of education and income for economists employed by business firms. (In particular,
economists with doctorates earn more than economists with only a bachelor’s degree.)
There is also a strong positive correlation between years of education and income for
economists employed by colleges and universities. But when all economists are consid-
ered, there is a negative correlation between education and income. The explanation for
this is that business pays high salaries and employs mostly economists with bachelor’s
degrees, while colleges pay lower salaries and employ mostly economists with doctorates.
Sketch a scatterplot with two groups of cases (business and academic) that illustrates how
a strong positive correlation within each group and a negative overall correlation can
occur together. (Hint: Begin by studying Figure 4.18 on page 227.)

4.45 TV AND OBESITY Over the last 20 years there has developed a positive association
between sales of television sets and the number of obese adolescents in the United
States. Do more TVs cause more children to put on weight, or are there other factors
involved? List some of the possible lurking variables.

4.46 THE S&P 500 The Standard & Poor’s 500-stock index is an average of the price of
500 stocks. There is a moderately strong correlation (roughly r = 0.6) between how
much this index changes in January and how much it changes during the entire year.
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FIGURE 4.23 Mortality of heart attack patients and number of heart attack cases treated for a

large group of hospitals.

If we looked instead at data on all 500 individual stocks, we would find a quite differ-
ent correlation. Would the correlation be higher or lower? Why?

4.47 THE LINK BETWEEN HEALTH AND INCOME An article entitled “The Health and Wealth of
Nations” says: ‘The positive correlation between health and income per capita is one of
the best-known relations in international development. This correlation is commonly
thought to reflect a causal link running from income to health. . . . Recently, however,
another intriguing possibility has emerged: that the health-income correlation is partly
explained by a causal link running the other way—from health to income.”27

Explain how higher income in a nation can cause better health. Then explain
how better health can cause higher income. There is no simple way to determine the
direction of the link.

4.48 RETURNS FOR U.S. AND OVERSEAS STOCKS Exercise 3.56 (page 179) examined the
relationship between returns on U.S. and overseas stocks. Return to the scatterplot and
regression line for predicting overseas returns from U.S. returns.

(a) Circle the point that has the largest residual (either positive or negative). What
year is this? Redo the regression without this point and add the new regression line to
your plot. Was this observation very influential?

(b) Whenever we regress two variables that both change over time, we should plot the
residuals against time as a check for time-related lurking variables. Make this plot for
the stock returns data. Are there any suspicious patterns in the residuals?

4.49 HEART ATTACKS AND HOSPITALS If you need medical care, should you go to a hospi-
tal that handles many cases like yours? Figure 4.23 presents some data for heart attacks.
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The figure plots mortality rate (the proportion of patients who died) against the num-
ber of heart attack patients treated for a large number of hospitals in a recent year. The
line on the plot is the least-squares regression line for predicting mortality from num-
ber of patients.
(a) Do the plot and regression generally support the thesis that mortality is lower at
hospitals that treat more heart attacks? Is the relationship very strong?

(b) In what way is the pattern of the plot nonlinear? Does the nonlinearity strengthen
or weaken the conclusion that heart attack patients should avoid hospitals that treat
few heart attacks? Why?

4.3 RELATIONS IN CATEGORICAL DATA
To this point we have concentrated on relationships in which at least the
response variable was quantitative. Now we will shift to describing relation-
ships between two or more categorical variables. Some variables—such as
sex, race, and occupation—are inherently categorical. Other categorical
variables are created by grouping values of a quantitative variable into classes.
Published data are often reported in grouped form to save space. To analyze
categorical data, we use the counts or percents of individuals that fall into
various categories.

Table 4.6 presents Census Bureau data on the years of school completed by Americans
of different ages. Many people under 25 years of age have not completed their educa-
tion, so they are left out of the table. Both variables, age and education, are grouped
into categories. This is a two-way table because it describes two categorical variables.
Education is the row variable because each row in the table describes people with one
level of education. Age is the column variable because each column describes one age
group. The entries in the table are the counts of persons in each age-by-education
class. Although both age and education in this table are categorical variables, both
have a natural order from least to most. The order of the rows and the columns in
Table 4.6 reflects the order of the categories.

TABLE 4.6 Years of school completed, by age, 2000 (thousands of persons)

Age group

Education 25 to 34 35 to 54 55+ Total

Did not complete high school 4,474 9,155 14,224 27,853
Completed high school 11,546 26,481 20,060 58,087
1 to 3 years of college 10,700 22,618 11,127 44,445
4 or more years of college 11,066 23,183 10,596 44,845

Total 37,786 81,435 56,008 175,230

EXAMPLE 4.19 EDUCATION AND AGE

two-way table
row variable

column variable
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Each marginal distribution from a two-way table is a distribution for a single
categorical variable. As we saw in Chapter 1, we can use a bar graph or a pie
chart to display such a distribution. Figure 4.24 is a bar graph of the distribu-

The percent of people 25 years of age or older who have at least 4 years of college is

Do three more such calculations to obtain the marginal distribution of education level
in percents. Here it is.

Education: Did not finish Completed 1–3 years ≥ 4 years
high school high school of college of college

Percent: 15.9 33.1 25.4 25.6

The total is 100% because everyone is in one of the four education categories.

total with four years of college
table total

= = =44 845
175 230

0 256 25 6
,
,

. . %

EXAMPLE 4.20 MARGINAL DISTRIBUTION

Marginal distributions
How can we best grasp the information contained in Table 4.6 First, look at the
distribution of each variable separately. The distribution of a categorical variable
just says how often each outcome occurred. The “Total” column at the right of
the table contains the totals for each of the rows. These row totals give the distri-
bution of education level (the row variable) among all people over 25 years of age:
27,853,000 did not complete high school, 58,087,000 finished high school but
did not attend college, and so on. In the same way, the “Total” row on the bottom
gives the age distribution. If the row and column totals are missing, the first thing
to do in studying a two-way table is to calculate them. The distributions of edu-
cation alone and age alone are often called marginal distributions because they
appear at the right and bottom margins of the two-way table.

If you check the column totals in Table 4.6, you will notice a few discrep-
ancies. For example, the sum of the entries in the “35 to 54” column is 81,437.
The entry in the “Total” row for that column is 81,435. The explanation is
roundoff error. The table entries are in the thousands of persons, and each is
rounded to the nearest thousand. The Census Bureau obtained the “Total”
entry by rounding the exact number of people aged 35 to 54 to the nearest
thousand. The result was 81,435,000. Adding the column entries, each of
which is already rounded, gives a slightly different result.

Percents are often more informative than counts. We can display the
marginal distribution of education level in terms of percents by dividing each
row total by the table total and converting to a percent.

marginal distributions

roundoff error
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FIGURE 4.24 A bar graph of the distribution of years of schooling completed among peo-

ple aged 25 years and over. This is one of the marginal distributions for Table 4.6.

tion of years of schooling. We see that people with at least some college edu-
cation make up about half of the 25-or-older population.

In working with two-way tables, you must calculate lots of percents. Here’s
a tip to help decide what fraction gives the percent you want. Ask, “What group
represents the total that I want a percent of?” The count for that group is the
denominator of the fraction that leads to the percent. In Example 4.20, we
wanted a percent “of people 25 or older years of age,” so the count of people
25 or older (the table total) is the denominator.

Describing relationships
The marginal distributions of age and of education separately do not tell us
how the two variables are related. That information is in the body of the table.
How can we describe the relationship between age and years of school com-
pleted? No single graph (such as a scatterplot) portrays the form of the rela-
tionship between categorical variables, and no single numerical measure (such
as the correlation) summarizes the strength of an association. To describe rela-
tionships among categorical variables, calculate appropriate percents from the
counts given. We use percents because counts are often hard to compare. For
example, 11,066,000 people age 25 to 34 have completed college, and only
10,596,000 people in the 55 and over age group have done so. But the older
age group is larger, so we can’t directly compare these counts.
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Although graphs are not as useful for describing categorical variables as
they are for quantitative variables, a graph still helps an audience to grasp the
data quickly. The bar graph in Figure 4.25 presents the information in
Example 4.20. 
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FIGURE 4.25 Bar graph comparing the percents of three age groups who have completed

4 or more years of college. The height of each bar is the percent of people in one age

group who have completed at least 4 years of college.

What percent of people aged 25 to 34 have completed 4 years of college? This is the
count who are 25 to 34 and have 4 years of college as a percent of the age group total:

“People aged 25 to 34” is the group we want a percent of, so the count for that group
is the denominator. In the same way, the percent of people in the 55 and over age
group who completed college is

Here are the results for all three age groups:

Age group: 25 to 34 35 to 54 55+
Percent with
4 years of college: 29.3 28.5 18.9

These percents help us see how the education of Americans varies with age. Older peo-
ple are less likely to have completed college.

10 596
56 008

0 189 18 9
,
,

. . %= =

11 066
37 786

0 293 29 3
,
,

. . %= =

EXAMPLE 4.21 HOW COMMON IS COLLEGE EDUCATION?
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Each bar represents one age group. The height of the bar is the percent of that age
group with at least 4 years of college. Although bar graphs look a bit like histograms,
their details and uses are different. A histogram shows the distribution of the values
of a quantitative variable. A bar graph compares the sizes of different items. The
horizontal axis of a bar graph need not have any measurement scale but may
simply identify the items being compared. The items compared in Figure 4.25
are the three age groups. Because each bar in a bar graph describes a different
item, we draw the bars with space between them.

EXERCISES
4.50 Sum the counts in the “55+” age column in Table 4.6 (page 241). Then explain
why the sum is not the same as the entry for this column in the “Total” row.

4.51 Give the marginal distribution of age among people 25 years of age or older in
percents, starting from the counts in Table 4.6 (page 241).

4.52 Using the counts in Table 4.6 (page 241), find the percent of people in each age
group who did not complete high school. Draw a bar graph that compares these per-
cents. State briefly what the data show.

4.53 SMOKING BY STUDENTS AND THEIR PARENTS Here are data from eight high schools on
smoking among students and among their parents:28

Neither parent One parent Both parents
smokes smokes smoke

Student does not smoke 1168 1823 1380
Student smokes 188 416 400

(a) How many students do these data describe?

(b) What percent of these students smoke?

(c) Give the marginal distribution of parents’ smoking behavior, both in counts and
in percents.

4.54 PYTHON EGGS How is the hatching of water python eggs influenced by the tem-
perature of the snake’s nest? Researchers assigned newly laid eggs to one of three
temperatures: hot, neutral, or cold. Hot duplicates the extra warmth provided by the
mother python, and cold duplicates the absence of the mother. Here are the data on
the number of eggs and the number that hatched:29

Cold Neutral Hot

Number of eggs 27 56 104
Number hatched 16 38 75

(a) Make a two-way table of temperature by outcome (hatched or not).

(b) Calculate the percent of eggs in each group that hatched. The researchers antici-
pated that eggs would not hatch in cold water. Do the data support that anticipation?



4.55 IS HIGH BLOOD PRESSURE DANGEROUS? Medical researchers classified each of a
group of men as “high” or “low” blood pressure, then watched them for 5 years. (Men
with systolic blood pressure 140 mm Hg or higher were “high”; the others, “low.”) The
following two-way table gives the results of the study:30

Died Survived

Low blood pressure 21 2655
High blood pressure 55 3283

(a) How many men took part in the study? What percent of these men died during
the 5 years of the study?

(b) The two categorical variables in the table are blood pressure (high or low) and out-
come (died or survived). Which is the explanatory variable?

(c) Is high blood pressure associated with a higher death rate? Calculate and compare
percents to answer this question.

Conditional distributions
Example 4.21 does not compare the complete distributions of years of school-
ing in the three age groups. It compares only the percents who finished col-
lege. Let’s look at the complete picture.
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Information about the 25 to 34 age group occupies the first column in Table 4.6. To
find the complete distribution of education in this age group, look only at that column.
Compute each count as a percent of the column total: 37,786. Here is the distribution:

Education: Did not finish Completed 1–3 years ≥ 4 years 
high school high school of college of college

Percent: 11.8 30.6 28.3 29.3

These percents add to 100% because all 25- to 34-year-olds fall in one of the educational
categories. The four percents together are the conditional distribution of education,
given that a person is 25 to 34 years of age. We use the term “conditional” because the dis-
tribution refers only to people who satisfy the condition that they are 25 to 34 years old.

For comparison, here is the conditional distribution of years of school completed
among people age 55 and over. To find these percents, look only at the “55+” column
in Table 4.6. The column total is the denominator for each percent calculation.

Education: Did not finish Completed 1–3 years ≥ 4 years 
high school high school of college of college

Percent: 25.4 35.8 19.9 18.9

EXAMPLE 4.22 CONDITIONAL DISTRIBUTION

conditional distribution



4.3 Relations in Categorical Data 247

Statistical software can speed the task of finding each entry in a two-way
table as a percent of its column total. Figure 4.26 displays the result. The soft-
ware found the row and column totals from the table entries, so they may dif-
fer slightly from those in Table 4.6.

The percent who did not finish high school is much higher in the older age group,
and the percents with some college and who finished college are much lower.
Comparing the conditional distributions of education in different age groups describes
the association between age and education. There are three different conditional dis-
tributions of education given age, one for each of the three age groups. All of these
conditional distributions differ from the marginal distribution of education found in
Example 4.20.

Each cell in this table contains a count from Table 4.6 along with that
count as a percent of the column total. The percents in each column form the
conditional distribution of years of schooling for one age group.

The percents in each column add to 100% because everyone in the age
group is accounted for. Comparing the conditional distributions reveals the
nature of the association between age and education. The distributions of edu-
cation in the two younger groups are quite similar, but higher education is less
common in the 55 and over group.

Bar graphs can help make the association visible. We could make three
side-by-side bar graphs, each resembling Figure 4.24 (page 243), to present the
three conditional distributions. Figure 4.27 shows an alternative form of bar
graph. Each set of three bars compares the percents in the three age groups
who have reached a specific educational level.

EDU

Total

AGE

37786 81435 56008

Frequency
Col Pct 25-34 35-54 55 over Total

NoHS 4474
11.84

9155
11.24

14224
25.40

27853

HSonly 11546
30.56

26481
32.52

20060
35.82

58087

SomeColl 10700
28.32

22618
27.77

11127
19.87

44445

Coll4yrs 11066
29.29

23183
28.47

10596
18.92

44845

175230

TABLE OF EDU BY AGE

FIGURE 4.26 SAS output of the two-way table of education by age with the three condi-

tional distributions of education, one for each age group. The percents in each column add

to 100%.
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We see at once that the “25 to 34” and “35 to 54” bars are similar for all four
levels of education, and that the “55 and over” bars show that many more
people  in this group did not finish high school and that many fewer have
any college.

No single graph (such as a scatterplot) portrays the form of the relationship
between categorical variables. No single numerical measure (such as the cor-
relation) summarizes the strength of the association. Bar graphs are flexible
enough to be helpful, but you must think about what comparisons you want to
display. For numerical measures, we rely on well-chosen percents. You must
decide which percents you need. Here is a hint: compare the conditional dis-
tributions of the response variable (education) for the separate values of the
explanatory variable (age). That’s what we did in Figure 4.26.

25 to 34 35 to 54
Age group

Age group Age group

Age group
55 and over 25 to 34 35 to 54 55 and over

25 to 34 35 to 54 55 and over 25 to 34 35 to 54 55 and over
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FIGURE 4.27 Bar graphs to compare the education levels of three age groups. Each graph 

compares the percents of three groups who fall in one of the four education levels.
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In Example 4.22 we compared the education of different age groups. That
is, we thought of age as the explanatory variable and education as the response
variable. We might also be interested in the distribution of age among persons
having a certain level of education. To do this, look only at one row in Table
4.6. Calculate each entry in that row as a percent of the row total, the total of
that education group. The result is another conditional distribution, the con-
ditional distribution of age given a certain level of education.

A two-way table contains a great deal of information in compact form.
Making that information clear almost always requires finding percents. You
must decide which percents you need. If you are studying trends in the train-
ing of the American workforce, comparing the distributions of education for
different age groups reveals the more extensive education of younger people.
If, on the other hand, you are planning a program to improve the skills of peo-
ple who did not finish high school, the age distribution within this educational
group is important information.

Simpson’s paradox
As is the case with quantitative variables, the effects of lurking variables can
change or even reverse relationships between two categorical variables. Here is
a hypothetical example that demonstrates the surprises that can await the
unsuspecting user of data.

To help consumers make informed decisions about health care, the government
releases data about patient outcomes in hospitals. You want to compare Hospital A and
Hospital B, which serve your community. Here is a two-way table of data on the sur-
vival of patients after surgery in these two hospitals. All patients undergoing surgery in
a recent time period are included. “Survived” means that the patient lived at least 6
weeks following surgery.

Hospital A Hospital B

Died 63 16
Survived 2037 784

Total 2100 800

The evidence seems clear: Hospital A loses 3% (63/2100) of its surgery patients, and
Hospital B loses only 2% (16/800). It seems that you should choose Hospital B if you
need surgery.

Not all surgery cases are equally serious, however. Patients are classified as being
in either “poor” or “good” condition before surgery. Here are the data broken down by
patient condition. Check that the entries in the original two-way table are just the sums
of the “poor” and “good” entries in this pair of tables.

EXAMPLE 4.23 PATIENT OUTCOMES IN HOSPITALS
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The patient’s condition is a lurking variable when we compare the death
rates at the two hospitals. When we ignore the lurking variable, Hospital B
seems safer, even though Hospital A does better for both classes of patients.
How can A do better in each group, yet do worse overall? Look at the data.
Hospital A is a medical center that attracts seriously ill patients from a wide
region. It had 1500 patients in poor condition. Hospital B had only 200 such
cases. Because patients in poor condition are more likely to die, Hospital A has
a higher death rate despite its superior performance for each class of patients.
The original two-way table, which did not take account of the condition of the
patients, was misleading. Example 4.23 illustrates Simpson’s paradox.

Good Condition Poor Condition

Hospital A Hospital B Hospital A Hospital B

Died 6 8 Died 57 8
Survived 594 592 Survived 1443 192

Total 600 600 Total 1500 200

Hospital A beats Hospital B for patients in good condition: only 1% (6/600) died 
in Hospital A, compared with 1.3% (8/600) in Hospital B. And Hospital A wins again
for patients in poor condition, losing 3.8% (57/1500) to Hospital B’s 4% (8/200). So
Hospital A is safer for both patients in good condition and patients in poor condition.
If you are facing surgery, you should choose Hospital A.

SIMPSON’S PARADOX

Simpson’s paradox refers to the reversal of the direction of a comparison
or an association when data from several groups are combined to form a
single group.

The lurking variables in Simpson’s paradox are categorical. That is, they
break the individuals into groups, as when surgery patients are classified as “good
condition” or “poor condition.” Simpson’s paradox is just an extreme form of the
fact that observed associations can be misleading when there are lurking variables. 

EXERCISES
4.56 Verify that the results for the conditional distribution of education level among
people aged 55 and over given in Example 4.22 (page 246) are correct.

4.57 Example 4.22 (page 246) gives the conditional distributions of education level
among 25- to 34-year-olds and among people 55 and over. Find the conditional distri-
bution of education level among 35- to 54-year-olds in percents. Is this distribution
more like the distribution for 25- to 34-year-olds or the distribution for people 55 and
over?
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4.58 Find the conditional distribution of age among people with at least 4 years of
college using the data from Example 4.22 (page 246).

4.59 MAJORS FOR MEN AND WOMEN IN BUSINESS A study of the career plans of young
women and men sent questionnaires to all 722 members of the senior class in the
College of Business Administration at the University of Illinois. One question asked
which major within the business program the student had chosen. Here are the data
from the students who responded:31

Female Male

Accounting 68 56
Administration 91 40
Economics 5 6
Finance 61 59

(a) Find the two conditional distributions of major, one for women and one for men.
Based on your calculations, describe the differences between women and men with a
graph and in words.

(b) What percent of the students did not respond to the questionnaire? The nonre-
sponse weakens conclusions drawn from these data.

4.60 COLLEGE ADMISSIONS PARADOX Upper Wabash Tech has two professional schools,
business and law. Here are two-way tables of applicants to both schools, categorized by
gender and admission decision. (Although these data are made up, similar situations
occur in reality.)32

Business Law

Admit Deny Admit Deny

Male 480 120 Male 10 90
Female 180 20 Female 100 200

(a) Make a two-way table of gender by admission decision for the two professional
schools together by summing entries in this table.

(b) From the two-way table, calculate the percent of male applicants who are admit-
ted and the percent of female applicants who are admitted. Wabash admits a higher
percent of male applicants.

(c) Now compute separately the percents of male and female applicants admitted by
the business school and by the law school. Each school admits a higher percent of
female applicants.

(d) This is Simpson’s paradox: both schools admit a higher percent of the women
who apply, but overall Wabash admits a lower percent of female applicants than of
male applicants. Explain carefully, as if speaking to a skeptical reporter, how it can
happen that Wabash appears to favor males when each school individually favors
females.
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4.61 RACE AND THE DEATH PENALTY Whether a convicted murderer gets the death penalty
seems to be influenced by the race of the victim. Here are data on 326 cases in which
the defendant was convicted of murder:33

White defendant

White victim Black victim

Death 19 0
Not 132 9

Black defendant

White victim Black victim

Death 11 6
Not 52 97

(a) Use these data to make a two-way table of defendant’s race (white or black) versus
death penalty (yes or no).

(b) Show that Simpson’s paradox holds: a higher percent of white defendants are sen-
tenced to death overall, but for both black and white victims a higher percent of black
defendants are sentenced to death.

(c) Use the data to explain why the paradox holds in language that a judge could
understand.

SUMMARY
A two-way table of counts organizes data about two categorical variables.
Values of the row variable label the rows that run across the table, and values
of the column variable label the columns that run down the table. Two-way
tables are often used to summarize large amounts of data by grouping out-
comes into categories.

The row totals and column totals in a two-way table give the marginal
distributions of the two individual variables. It is clearer to present these dis-
tributions as percents of the table total. Marginal distributions tell us nothing
about the relationship between the variables.

To find the conditional distribution of the row variable for one specific
value of the column variable, look only at that one column in the table. Find
each entry in the column as a percent of the column total.

There is a conditional distribution of the row variable for each column in
the table. Comparing these conditional distributions is one way to describe the
association between the row and the column variables. It is particularly useful
when the column variable is the explanatory variable.

Bar graphs are a flexible means of presenting categorical data. There is no
single best way to describe an association between two categorical variables.

A comparison between two variables that holds for each individual value
of a third variable can be changed or even reversed when the data for all val-
ues of the third variable are combined. This is Simpson’s paradox.
Simpson’s paradox is an example of the effect of lurking variables on an
observed association.
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COLLEGE UNDERGRADUATES Exercises 4.62 to 4.66 are based on Table 4.7. This two-way
table reports data on all undergraduate students enrolled in U.S. colleges and univer-
sities in the fall of 1995 whose age was known.

TABLE 4.7 Undergraduate college enrollment, fall 1995 (thousands of students)

Age 2-year full-time 2-year part-time 4-year full-time 4-year part-time

under 18 41 125 75 45
18 to 24 1378 1198 4607 588
25 to 39 428 1427 1212 1321
40 and up 119 723 225 605

Total 1966 3472 6119 2559

Source: Digest of Education Statistics 1997, accessed on the National Center for Education Statistics Web
site, http://www.ed.gov/NCES.

4.62

(a) How many undergraduate students were enrolled in colleges and universities?

(b) What percent of all undergraduate students were 18 to 24 years old in the fall of
the academic year?

(c) Find the percent of the undergraduates enrolled in each of the four types of pro-
gram who were 18 to 24 years old. Make a bar graph to compare these percents.

(d) The 18 to 24 group is the traditional age group for college students. Briefly sum-
marize what you have learned from the data about the extent to which this group pre-
dominates in different kinds of college programs.

4.63

(a) An association of two-year colleges asks: “What percent of students enrolled part-
time at 2-year colleges are 25 to 39 years old?”

(b) A bank that makes education loans to adults asks: “What percent of all 25- to 39-
year-old students are enrolled part-time at 2-year colleges?”

4.64

(a) Find the marginal distribution of age among all undergraduate students, first in
counts and then in percents. Make a bar graph of the distribution in percents.

(b) Find the conditional distribution of age (in percents) among students enrolled
part-time in 2-year colleges and make a bar graph of this distribution.

(c) Briefly describe the most important differences between the two age distributions.

(d) The sum of the entries in the “2-year part-time” column is not the same as the total
given for that column. Why is this?

SECTION 4.3 EXERCISES



4.65 Call students aged 40 and up “older students.” Compare the presence of older
students in the four types of program with numbers, a graph, and a brief summary of
your findings.

4.66 With a little thought, you can extract from Table 4.7 information other than
marginal and conditional distributions. The traditional college age group is ages 18 to
24 years.

(a) What percent of all undergraduates fall in this age group?

(b) What percent of students at 2-year colleges fall in this age group?

(c) What percent of part-time students fall in this group?

4.67 FIREARM DEATHS Firearms are second to motor vehicles as a cause of nondisease
deaths in the United States. Here are counts from a study of all firearm-related deaths
in Milwaukee, Wisconsin, between 1990 and 1994.34 We want to compare the types of
firearms used in homicides and in suicides. We suspect that long guns (shotguns and
rifles) will more often be used in suicides because many people keep them at home for
hunting. Make a careful comparison of homicides and suicides, with a bar graph.
What do you find about long guns versus handguns?

Handgun Shotgun Rifle Unknown Total

Homicides 468 28 15 13 524
Suicides 124 22 24 5 175

4.68 HELPING COCAINE ADDICTS Cocaine addiction is hard to break. Addicts need
cocaine to feel any pleasure, so perhaps giving them an antidepressant drug will help.
A 3-year study with 72 chronic cocaine users compared an antidepressant drug called
desipramine with lithium and a placebo. (Lithium is a standard drug to treat cocaine
addiction. A placebo is a dummy drug, used so that the effect of being in the study but
not taking any drug can be seen.) One-third of the subjects, chosen at random,
received each drug. Here are the results:35

Desipramine Lithium Placebo

Relapse 10 18 20
No relapse 14 6 4

Total 24 24 24

(a) Compare the effectiveness of the three treatments in preventing relapse. Use per-
cents and draw a bar graph.

(b) Do you think that this study gives good evidence that desipramine actually causes
a reduction in relapses?

4.69 SEAT BELTS AND CHILDREN Do child restraints and seat belts prevent injuries to
young passengers in automobile accidents? Here are data on the 26,971 passengers
under the age of 15 in accidents reported in North Carolina during two years before
the law required restraints:36
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Restrained Unrestrained

Injured 197 3,844
Uninjured 1,749 21,181

(a) What percent of these young passengers were restrained?

(b) Do the data provide evidence that young passengers are less likely to be injured in
an accident if they wear restraints? Calculate and compare percents to answer this
question.

4.70 BASEBALL PARADOX Most baseball hitters perform differently against right-handed
and left-handed pitching. Consider two players, Joe and Moe, both of whom bat right-
handed. The table below records their performance against right-handed and 
left-handed pitchers.

Player Pitcher Hits At bats

Joe Right 40 100
Left 80 400

Moe Right 120 400
Left 10 100

(a) Make a two-way table of player (Joe or Moe) versus outcome (hit or no hit) by
summing over both kinds of pitcher.

(b) Find the overall batting average (hits divided by total times at bat) for each player.
Who has the higher batting average?

(c) Make a separate two-way table of player versus outcome for each kind of
pitcher. From these tables, find the batting averages of Joe and Moe against right-
handed pitching. Who does better? Do the same for left-handed pitching. Who
does better?

(d) The manager doesn’t believe that one player can hit better against both left-
handers and right-handers yet have a lower overall batting average. Explain in simple
language why this happens to Joe and Moe.

4.71 OBESITY AND HEALTH Recent studies have shown that earlier reports underestimat-
ed the health risks associated with being overweight. The error was due to overlooking
lurking variables. In particular, smoking tends both to reduce weight and to lead to ear-
lier death. Illustrate Simpson’s paradox by a simplified version of this situation. That
is, make up tables of overweight (yes or no) by early death (yes or no) by smoker (yes
or no) such that

• Overweight smokers and overweight nonsmokers both tend to die earlier than those
not overweight.

• But when smokers and nonsmokers are combined into a two-way table of overweight
by early death, persons who are not overweight tend to die earlier.
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CHAPTER REVIEW
In Chapter 3, we learned how to analyze two-variable data that show a linear
pattern. We learned about positive and negative associations and how to mea-
sure the strength of association between two variables. We also developed a
procedure for constructing a model (the least-squares regression line) that cap-
tures the trend of the data. This LSRL is useful for prediction purposes. A
recurring theme is that data analysis begins with graphs and then adds numer-
ical summaries of specific aspects of the data.

In this chapter we learned how to construct mathematical models for
data that fit a curve, such as an exponential function or a power function. We
also learned that although correlation and regression are powerful tools for
understanding two-variable data when both variables are quantitative, both
correlation and regression have their limitations. In particular, we are cau-
tioned that a strong observed association between two variables may exist
without a cause-and-effect link between them. If both variables are categori-
cal, there is no satisfactory graph for displaying the data, although bar graphs
can be helpful. We describe the relationship by comparing percents.

Here is a review list of the most important skills you should have gained
from studying this chapter.

A. MODELING NONLINEAR DATA

1. Recognize that when a variable is multiplied by a fixed number greater than
1 in each equal time period, exponential growth results; when the ratio is a pos-
itive number less than 1, it’s called exponential decay.

2. Recognize that when one variable is proportional to a power of a second
variable, the result is a power function.

3. In the case of both exponential growth and power function, perform a log-
arithmic transformation and obtain points that lie in a linear pattern. Then use
least-squares regression on the transformed points. An inverse transformation
then produces a curve that is a model for the original points.

4. Know that deviations from the overall pattern are most easily examined by
fitting a line to the transformed points and plotting the residuals from this line
against the explanatory variable (or fitted values).

B. INTERPRETING CORRELATION AND REGRESSION
1. Understand that both r and the least-squares regression line can be strongly
influenced by a few extreme observations.
2. Recognize possible lurking variables that may explain the observed associa-
tion between two variables x and y.
3. Understand that even a strong correlation does not mean that there is a
cause-and-effect relationship between x and y.
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C. RELATIONS IN CATEGORICAL DATA

1. From a two-way table of counts, find the marginal distributions of both vari-
ables by obtaining the row sums and column sums.

2. Express any distribution in percents by dividing the category counts by their
total.

3. Describe the relationship between two categorical variables by computing
and comparing percents. Often this involves comparing the conditional distri-
butions of one variable for the different categories of the other variable.

4. Recognize Simpson’s paradox and be able to explain it.

CHAPTER 4 REVIEW EXERCISES

4.72 LIGHT INTENSITY In physics class, the intensity of a 100-watt light bulb was measured
by a sensing device at various distances from the light source, and the following data
were collected. Note that a candela (cd) is an international unit of luminous intensity.

Distance (meters) Intensity (candelas) 

1.0 0.2965
1.1 0.2522
1.2 0.2055
1.3 0.1746
1.4 0.1534
1.5 0.1352
1.6 0.1145
1.7 0.1024
1.8 0.0923
1.9 0.0832
2.0 0.0734

(a) Plot the data. Based on the pattern of points, propose a model form for the data.
Then use a transformation followed by linear regression and then an inverse transfor-
mation to construct a model.

(b) Report the equation, and plot the original data with the model on the same axes.

(c) Describe the relationship between the intensity and the distance from the light
source.

(d) Consult the physics textbooks used in your school and find the formula for the
intensity of light as a function of distance from the light source. How do your experi-
mental results compare with the theoretical formula?

4.73 PENDULUM An experiment was conducted with a pendulum of variable length.
The period, or length of time to complete one complete oscillation, was recorded for
several lengths. Here are the data:



Length (feet): 1 2 3 4 5 6 7
Period (seconds): 1.10 1.56 1.92 2.20 2.50 2.71 2.93

(a) Make a plot of period against length. Describe the pattern that you see.

(b) Propose a model form. Then use a transformation to construct a model for the
data. Report the equation, and plot the original data with the model on the same axes.

(c) Describe the relationship between the length of a pendulum and its period.

4.74 EXACT EXPONENTIAL GROWTH, I A clever courtier, offered a reward by an ancient king
of Persia, asked for a grain of rice on the first square of a chess board, 2 grains on the
second square, then 4, 8, 16, and so on.

(a) Make a table of the number of grains on each of the first 10 squares of the board.

(b) Plot the number of grains on each square against the number of the square for squares
1 to 10, and connect the points with a smooth curve. This is an exponential curve.

(c) How many grains of rice should the king deliver for the 64th (and final) square?

(d) Take the logarithm of each of your numbers of grains from (a). Plot these loga-
rithms against the number of squares from 1 to 10. You should get a straight line.

(e) From your graph in (d) find the approximate values of the slope b and the intercept
a for the line. Use the equation y = a + bx to predict the logarithm of the amount for the
64th square. Check your result by taking the logarithm of the amount you found in (c).

4.75 800-METER RUN Return to the 800-meter world record times for men and women
of Exercise 3.75 (page 188). Suppose you are uncomfortable with the linear model for
the declinr in winning times that will eventually intersect the horizontal axis.

(a) Construct exponential and power regression models for the men’s record times.
Which do you consider to be a better model?

(b) Based on your answer to (a), construct a similar model for the women’s record
times.

(c) Will either of these curves eventually reach zero? Will the curves intersect each
other? If so, in what year will the curves intersect?

(d) Is this a satisfactory model, or is there a better model tor these data?

4.76 SOCIAL INSURANCE Federal expenditures on social insurance (chiefly social security
and Medicare) increased rapidly after 1960. Here are the amounts spent, in millions
of dollars:

Year: 1960 1965 1970 1975 1980 1985 1990
Spending: 14,307 21,807 45,246 99,715 191,162 310,175 422,257

(a) Plot social insurance expenditures against time. Does the pattern appear closer to
linear growth or to exponential growth?

(b) Take the logarithm of the amounts spent. Plot these logarithms against time. Do
you think that the exponential growth model fits well?

258 Chapter 4 More on Two-Variable Data
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(c) After entering the data into the Minitab statistical system, with year as C1 and
expenditures as C2, we obtain the least-squares line for the logarithms as follows:

MTB> LET C3 = LOGT(C2) 

MTB> REGRESS C3 ON 1, C1

The regression equation is 
C3 = -98.63833 + 0.05244 C1

That is, the least-squares line is

log y = –98.63833 + (0.05244 � year)

Draw this line on your graph from (b).

(d) Use this line to predict the logarithm of social insurance outlays for 1988. Then
compute

y = 10log y

to predict the amount y spent in 1988.

(e) The actual amount (in millions) spent in 1988 was $358,412. Take the logarithm
of this amount and add the 1988 point to your graph in (b). Does it fall close to the
line? When President Reagan took office in 1981, he advocated a policy of slowing
growth in spending on social progams. Did the trend of exponential growth in spending
for social insurance change in a major way during the Reagan years, 1981 to 1988?

4.77 KILLING BACTERIA Expose marine bacteria to X-rays for time periods from 1 to 15
minutes. Here are the number of surviving bacteria (in hundreds) on a culture plate
after each exposure time:37

Time t Count y Time t Count y

1 355 9 56
2 211 10 38
3 197 11 36
4 166 12 32
5 142 13 21
6 106 14 19
7 104 15 15
8 60

Theory suggests an exponential growth or decay model. Do the data appear to conform
to this theory?

4.78 BANK CARDS Electronic fund transfers, from bank automatic teller machines and
the use of debit cards by consumers, have grown rapidly in the United States. Here are
data on the number of such transfers (in millions).38
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Year EFT Year EFT Year EFT

1985 3,579 1991 6,642 1996 11,780
1987 4,108 1992 7,537 1997 12,580
1988 4,581 1993 8,135 1998 13,160
1989 5,274 1994 9,078 1999 13,316
1990 5,942 1995 10,464

Write a clear account of the pattern of growth of electronic transfers over time, sup-
porting your description with plots and calculations as needed. Has the pattern
changed in the most recent years?

4.79 ICE CREAM AND FLU There is a negative correlation between the number of flu cases
reported each week throughout the year and the amount of ice cream sold in that par-
ticular week. It’s unlikely that ice cream prevents flu. What is a more plausible expla-
nation for this observed correlation?

4.80 VOTING FOR PRESIDENT The following table gives the U.S. resident population of
voting age and the votes cast for president, both in thousands, for presidential elections
between 1960 and 2000:

Year Population Votes Year Population Votes 

1960 109,672 68,838 1984 173,995 92,653
1964 114,090 70,645 1988 181,956 91,595
1968 120,285 73,212 1992 189,524 104,425
1972 140,777 77,719 1996 196,511 96,456
1976 152,308 81,556 2000 209,128 105,363
1980 163,945 86,515

(a) For each year compute the percent of people who voted. Make a time plot of the per-
cent who voted. Describe the change over time in participation in presidential elections.

(b) Before proposing political explanations for this change, we should examine possible
lurking variables. The minimum voting age in presidential elections dropped from 21 to
18 years in 1970. Use this fact to propose a partial explanation for the trend you saw in (a).

4.81 WOMEN AND MARITAL STATUS The following two-way table describes the age and mar-
ital status of American women in 2000. The table entries are in thousands of women.

Marital status

Age Single Married Widowed Divorced Total

15–24 16,121 2,694 21 203 19,040
25–39 7,409 19,925 212 2,965 30,510
40–64 3,553 29,687 2,338 6,797 42,373

�65 680 8,223 8,490 1,344 18,735

Total 110,660
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(a) Find the sum of the entries in the 15–24 row. Why does this sum differ from the
“Total” entry for that row?

(b) Give the marginal distribution of marital status for all adult women (use percents).
Draw a bar graph to display this distribution.

(c) Compare the conditional distributions of marital status for women aged 15 to 24
and women aged 40 to 64. Briefly describe the most important differences between the
two groups of women, and back up your description with percents.

(d) You are planning a magazine aimed at single women who have never been mar-
ried. (That’s what “single” means in government data.) Find the conditional distribu-
tion of ages among single women.

4.82 WOMEN SCIENTISTS A study by the National Science Foundation39 found that the
median salary of newly graduated female engineers and scientists was only 73% of
the median salary for males. When the new graduates were broken down by field,
however, the picture changed. Women’s median salaries as a percent of the male
median in the 16 fields studied were

94% 96% 98% 95% 85% 85% 84% 100%
103% 100% 107% 93% 104% 93% 106% 100%

How can women do nearly as well as men in every field yet fall far behind men when
we look at all young engineers and scientists?

4.83 SMOKING AND STAYING ALIVE In the mid-1970s, a medical study contacted randomly
chosen people in a district in England. Here are data on the 1314 women contacted
who were either current smokers or who had never smoked. The table classifies these
women by their smoking status and age at the time of the survey and whether they were
still alive 20 years later.40

Age 18 to 44 Age 45 to 64 Age 65+

Smoker Not Smoker Not Smoker Not

Dead 19 13 Dead 78 52 Dead 42 165
Alive 269 327 Alive 167 147 Alive 7 28

(a) Make a two-way table of smoking (yes or no) by dead or alive. What percent
of the smokers stayed alive for 20 years? What percent of the nonsmokers sur-
vived? It seems surprising that a higher percent of smokers stayed alive.

(b) The age of the women at the time of the study is a lurking variable. Show that
within each of the three age groups in the data, a higher percent of nonsmokers
remained alive 20 years later. This is another example of Simpson’s paradox.

(c) The study authors give this explanation: “Few of the older women (over 65 at
the original survey) were smokers, but many of them had died by the time of follow-
up.” Compare the percent of smokers in the three age groups to verify the expla-
nation.
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NOTES AND DATA SOURCES



Chapter Review 263

17. This example is drawn from M. Goldstein, “Preliminary inspection of multivari-
ate data,” The American Statistician, 36(1982), pp. 358–362.
18. Data provided by Peter Cook, Department of Mathematics, Purdue University.
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